Publications by authors named "Carla S Alves"

S and N-doped carbon dots (S-CDs and N-CDs) and their cisplatin (cis-Pt) derivatives. (S-CDs@cis-Pt and N-CDs@cis-Pt) were tested on two ovarian cancer cell lines: A2780 and A2780 cells resistant to cis-Pt (A2780R). Several spectroscopic techniques were employed to check S-CDs@cis-Pt and N-CDs@cis-Pt: solid- and solution-state nuclear magnetic resonance, matrix-assisted laser desorption, ionization time-of-flight mass spectrometry, and X-ray photoelectron spectroscopy.

View Article and Find Full Text PDF

Multi-locus methylation defects (MLMDs) in imprinted loci have been reported in Beckwith-Wiedemann Syndrome (BWS). Large offspring syndrome (LOS), a phenotypic subgroup of abnormal offspring syndrome (AOS), is considered a molecular and phenotypic model for BWS. Both LOS and BWS have presented epigenetic defects in some common imprinted loci.

View Article and Find Full Text PDF

In this study, the fibers of invasive species L. and L. were successfully used for the first time as new sources to produce cytocompatible and highly crystalline cellulose nanofibers.

View Article and Find Full Text PDF

A novel bioactive macromolecule based on morpholino-functionalized phosphorus dendrimers (generation 2, G2-Mor) was developed for osteogenic differentiation of mesenchymal stem cells (MSCs). Interestingly, through in vitro tests, it was shown that G2-Mor dendrimer can strongly promote the transformation of MSCs into osteoblasts, which implies the potential application of phosphorus dendrimers in bone regeneration for precision regenerative medicine.

View Article and Find Full Text PDF

We demonstrate a novel serum-enhanced gene delivery approach using zwitterion-functionalized dendrimer-entrapped gold nanoparticles (Au DENPs) as a non-viral vector for inhibition of cancer cell metastasis in vitro. Poly(amidoamine) dendrimers of generation 5 decorated with zwitterion carboxybetaine acrylamide (CBAA) and lysosome-targeting agent morpholine (Mor) were utilized to entrap gold NPs. We show that both Mor-modified and Mor-free Au DENPs are cytocompatible and can effectively deliver plasmid DNA encoding different reporter genes to cancer cells in medium with or without serum.

View Article and Find Full Text PDF

This work describes the synthesis and pharmacological evaluation of picolinoyl-based peptidomimetics of melanocyte stimulating hormone release inhibiting factor 1 (MIF-1) as dopamine modulating agents. Eight novel peptidomimetics were tested for their ability to enhance the maximal effect of tritiated -propylapomorphine ([H]-NPA) at dopamine D receptors (DR). Methyl picolinoyl-l-valyl-l-alaninate (compound ) produced a statistically significant increase in the maximal [H]-NPA response at 0.

View Article and Find Full Text PDF

Novel theranostic nanocarriers exhibit a desirable potential to treat diseases based on their ability to achieve targeted therapy while allowing for real-time imaging of the disease site. Development of such theranostic platforms is still quite challenging. Herein, we present the construction of multifunctional dendrimer-based theranostic nanosystem to achieve cancer cell chemotherapy and computed tomography (CT) imaging with targeting specificity.

View Article and Find Full Text PDF

Laponite® is a synthetic smectite clay that already has many important technological applications, which go beyond the conventional uses of clays in pharmaceutics and cosmetics. In biomedical applications, particularly in nanomedicine, this material holds great potential. Laponite® is a 2-dimensional (2D) nanomaterial composed of disk-shaped nanoscale crystals that have a high aspect ratio.

View Article and Find Full Text PDF

Aim: To synthesize the arginine-glycine-aspartic (RGD) functionalized dendrimer-entrapped gold nanoparticles (Au DENPs) for siRNA delivery to induce gene silencing of cancer cells in vitro and in vivo.

Materials & Methods: Au DENPs modified with RGD peptide via a polyethylene glycol spacer were used as a vector of two distinct small interfering RNAs (siRNAs) (VEGFvascular endothelial growth factor siRNA and B-cell lymphoma/leukemia-2 siRNA), and the physicochemical properties, cytocompatibility and transfection efficiency of Au DENP/siRNA polyplexes were characterized.

Results: The Au DENP/siRNA polyplexes with good cytocompatibility and highly efficient transfection capacity can be used for the transfection of siRNAs.

View Article and Find Full Text PDF

The polymerase chain reaction (PCR) is considered an excellent technique and is widely used in both molecular biology research and various clinical applications. However, the presence of byproducts and low output are limitations generally associated with this technique. Recently, the use of nanoparticles (NPs) has been shown to be very effective at enhancing PCR.

View Article and Find Full Text PDF

A unique matrix metalloproteinase 2-targeted photosensitizer delivery platform was developed in this study for tumor-targeting imaging and photodynamic therapy. The model photosensitizer therapeutic agent chlorin e6 (Ce6) was first covalently conjugated with matrix metalloproteinase 2-cleavable polypeptide and then modified with polyethylene glycol via a redox-responsive cleavable disulfide linker. The resultant matrix metalloproteinase 2-cleavable polypeptide modified PEGylated Ce6 (PEG-SS-Ce6-MMP2) nanoparticles, which formed via self-assembly, were observed to be monodisperse and significantly stable in aqueous solution.

View Article and Find Full Text PDF

We report the use of arginine-glycine-aspartic (Arg-Gly-Asp, RGD) peptide-modified dendrimer-entrapped gold nanoparticles (Au DENPs) for highly efficient and specific gene delivery to stem cells. In this study, generation 5 poly(amidoamine) dendrimers modified with RGD via a poly(ethylene glycol) (PEG) spacer and with PEG monomethyl ether were used as templates to entrap gold nanoparticles (AuNPs). The native and the RGD-modified PEGylated dendrimers and the respective well characterized Au DENPs were used as vectors to transfect human mesenchymal stem cells (hMSCs) with plasmid DNA (pDNA) carrying both the enhanced green fluorescent protein and the luciferase (pEGFPLuc) reporter genes, as well as pDNA encoding the human bone morphogenetic protein-2 (hBMP-2) gene.

View Article and Find Full Text PDF

Development of multifunctional nanoscale drug-delivery systems for targeted cancer therapy still remains a great challenge. Here, we report the synthesis of cyclic arginine-glycine-aspartic acid (RGD) peptide-conjugated generation 5 (G5) poly(amidoamine) dendrimers for anticancer drug encapsulation and targeted therapy of cancer cells overexpressing αvβ3 integrins. In this study, amine-terminated G5 dendrimers were used as a platform to be sequentially modified with fluorescein isothiocyanate (FI) via a thiourea linkage and RGD peptide via a polyethylene glycol (PEG) spacer, followed by acetylation of the remaining dendrimer terminal amines.

View Article and Find Full Text PDF

This work focuses on the conformational and dynamic properties of the antimicrobial peptides (AMPs), BP100 and pepR, when confined within model membrane systems. Brownian dynamics (BD) simulations of a coarse-grained model of each respective peptide in an environment reproducing the phospholipid bilayer were carried out. Simple mean-field potentials were used to reproduce three physically different model phosphatidylcholine (PC) membrane systems.

View Article and Find Full Text PDF

The potential of antimicrobial peptides (AMPs) as an alternative to conventional therapies is well recognized. Insights into the biological and biophysical properties of AMPs are thus key to understanding their mode of action. In this study, the mechanisms adopted by two AMPs in disrupting the gram-negative Escherichia coli bacterial envelope were explored.

View Article and Find Full Text PDF

The dimeric structure of certain cytosolic GSTs (glutathione S-transferases) is stabilized by a hydrophobic lock-and-key motif at their subunit interface. In hGSTA1-1 (human class Alpha GST with two type-1 subunits), the key consists of two residues, Met51 and Phe52, that fit into a hydrophobic cavity (lock) in the adjacent subunit. SEC (size-exclusion chromatography)-HPLC, far-UV CD and tryptophan fluorescence of the M51A and M51A/F52S mutants indicated the non-disruptive nature of these mutations on the global structure.

View Article and Find Full Text PDF