Vector-borne diseases are globally prevalent and represent a major socioeconomic problem worldwide. Blood-sucking arthropods transmit most pathogenic agents that cause these human infections. The pathogens transmission to their vertebrate hosts depends on how efficiently they infect their vector, which is particularly impacted by the microbiota residing in the intestinal lumen, as well as its cells or internal organs such as ovaries.
View Article and Find Full Text PDFBlood-feeding arthropods are considered an enormous public health threat. They are vectors of a plethora of infectious agents that cause potentially fatal diseases like Malaria, Dengue fever, Leishmaniasis, and Lyme disease. These vectors shine due to their own physiological idiosyncrasies, but one biological aspect brings them all together: the requirement of blood intake for development and reproduction.
View Article and Find Full Text PDFBrain Expressed X-linked (BEX) protein family consists of five members in humans and is highly expressed during neuronal development. They are known to participate in cell cycle and in signaling pathways involved in neurodegeneration and cancer. BEX3 possess a conserved leucine-rich nuclear export signal and experimental data confirmed BEX3 nucleocytoplasmic shuttling.
View Article and Find Full Text PDFThe selenium-dependent glutathione peroxidase (SeGPx) is a well-studied enzyme that detoxifies organic and hydrogen peroxides and provides cells or extracellular fluids with a key antioxidant function. The presence of a SeGPx has not been unequivocally demonstrated in insects. In the present work, we identified the gene and studied the function of a Rhodnius prolixus SeGPx (RpSeGPx).
View Article and Find Full Text PDFTrypanosoma cruzi is a hemoflagellate protozoan that causes Chagas' disease. The life cycle of T. cruzi is complex and involves different evolutive forms that have to encounter different environmental conditions provided by the host.
View Article and Find Full Text PDFPyrrolysyl-tRNA synthetase and its cognate suppressor tRNA(Pyl) mediate pyrrolysine (Pyl) insertion at in frame UAG codons. The presence of an RNA hairpin structure named Pyl insertion structure (PYLIS) downstream of the suppression site has been shown to stimulate the insertion of Pyl in archaea. We study here the impact of the presence of PYLIS on the level of Pyl and the Pyl analog N-epsilon-cyclopentyloxycarbonyl-l-lysine (Cyc) incorporation using a quantitative lacZ-luc tandem reporter system in an Escherichia coli context.
View Article and Find Full Text PDFPyrrolysine (Pyl) is co-translationally inserted into a subset of proteins in the Methanosarcinaceae and in Desulfitobacterium hafniense programmed by an in-frame UAG stop codon. Suppression of this UAG codon is mediated by the Pyl amber suppressor tRNA, tRNA(Pyl), which is aminoacylated with Pyl by pyrrolysyl-tRNA synthetase (PylRS). We compared the behavior of several archaeal and bacterial PylRS enzymes towards tRNA(Pyl).
View Article and Find Full Text PDFPyrrolysine (Pyl), the 22nd co-translationally inserted amino acid, is incorporated in response to a UAG amber stop codon. Pyrrolysyl-tRNA synthetase (PylRS) attaches Pyl to its cognate tRNA, the special amber suppressor tRNA(Pyl). The genes for tRNA(Pyl) (pylT) and PylRS (pylS) are found in all members of the archaeal family Methanosarcinaceae, and in Desulfitobacterium hafniense.
View Article and Find Full Text PDFIn certain methanogenic archaea a new amino acid, pyrrolysine (Pyl), is inserted at in-frame UAG codons in the mRNAs of some methyltransferases. Pyl is directly acylated onto a suppressor tRNA(Pyl) by pyrrolysyl-tRNA synthetase (PylRS). Due to the lack of a readily available Pyl source, we looked for structural analogues that could be aminoacylated by PylRS onto tRNA(Pyl).
View Article and Find Full Text PDF