Plants (Basel)
May 2022
The lanthanides are among the rare earth elements (REEs), which are indispensable constituents of modern technologies and are often challenging to acquire from natural resources. The demand for REEs is so high that there is a clear need to develop efficient and environmentally-friendly recycling methods. In the present study, living cells of the extremophile were used to remove four REEs, Yttrium, Cerium, Europium, and Terbium, from single- and quaternary-metal aqueous solutions.
View Article and Find Full Text PDFThe synthesis and characterization of the N-rich bis(triazole) compound 1,4'-[3,3'-bis(1,2,4-triazole)]-4',5,5'-triamine (CHN) with a N content of 69.6% by weight is reported. The compound exhibits a rich acid-base behavior because it can accept up to two protons, forming a monocation and a dication, and can lose one proton, forming an anion.
View Article and Find Full Text PDFBackground: The mitochondrial cofactors α-lipoic acid (ALA), coenzyme Q10 (CoQ10) and carnitine (CARN) play distinct and complementary roles in mitochondrial functioning, along with strong antioxidant actions. Also termed mitochondrial nutrients (MNs), these cofactors have demonstrated specific protective actions in a number of chronic disorders, as assessed in a well-established body of literature.
Methods: Using PubMed, the authors searched for articles containing information on the utilization of MNs in inflammatory disorders as assessed from in vitro and animal studies, and in clinical trials, in terms of exerting anti-inflammatory actions.
A new N-rich triazolo-triazole derivative, 4-methyl-7-(pyrazin-2-yl)-2H-[1,2,4]triazolo[3,2-c][1,2,4]triazole (C8H7N7), bearing a pyrazine residue at 7-position of the triazolo-triazole bicycle, was synthesized, and its acid-base and metal coordination properties were evaluated in solution. The results showed amphoteric behavior and the formation of stable complexes with Cu(ii) and Zn(ii) in pH intervals in which the ligand is neutral or deprotonated. Computational studies were performed in order to evaluate the stability of the different tautomers/conformers of the ligand, and the proton position in the neutral and acidic forms.
View Article and Find Full Text PDFFine control of the tautomeric forms of [1,2,4]triazolo[3,2-c][1,2,4]triazole derivatives in acidic conditions has been achieved by acting on the electronic character of the substituent at position 7 of the heterobicycle and on the counterion. Strong electron releasing or electron withdrawing substituents lead almost exclusively to a single tautomeric form, the 1H-3H or the 2H-3H, respectively. In the case of the phenol substituent, both tautomeric forms are present in comparable amount in solution; the two tautomers can also be selectively precipitated in different crystalline salts using suitable counterions.
View Article and Find Full Text PDFIn this study, macroscopic and spectroscopic data were combined to develop a surface complexation model that describes the acid-base properties of Bacillus subtilis. The bacteria were freeze-dried and then resuspended in 0.1 M NaCl ionic medium.
View Article and Find Full Text PDFA straightforward method for both the quantitative and the equilibrium analysis of humic acids in solution, based on the combination of potentiometry with coulometry, is presented. The method is based on potentiometric titrations of alkaline solutions containing, besides the humic acid sample, also NaClO(4) 1M; by means of constant current coulometry the analytical acidity in the solutions is increased with a high precision, until the formation of a solid phase occurs. Hence, the total acid content of the macromolecules may be determined from the e.
View Article and Find Full Text PDFThe complex formation between the dioxouranium (VI) and the oxalate ions has been investigated by measuring the potential of a glass electrode, at 25.00 degrees C, in 1 and 3 M NaClO4, at lower acidities than 10(-4.5) M, in order to favour the formation of (mixed) ternary species.
View Article and Find Full Text PDFAn investigation on the complex formation equilibria between divalent metal ions Me (with Me=Mn, Co, Ni, Cu, Cd, and Pb) and phytic acid (H(12)L) is presented. Experiments were performed through a potentiometric methodology by measuring, at 25 degrees C, the proton and, in some cases (Cu(2+), Cd(2+), and Pb(2+)), also the metal ion activity at equilibrium in solutions containing, besides the metal and the ligand, 3 M NaClO(4) as the ionic medium. Unhydrolyzed solutions of the metal ion at millimolar concentration levels were titrated with solutions of about 10 mM sodium phytate, until the formation of a solid phase took place (always at pH approximately 2.
View Article and Find Full Text PDF