Deforestation and subsequent land-use conversion has altered ecosystems and led to negative effects on biodiversity. To ameliorate these effects, nitrogen-fixing (N-fixing) trees are frequently used in the reforestation of degraded landscapes, especially in the tropics; however, their influence on ecosystem properties such as nitrogen (N) availability and carbon (C) stocks are understudied. Here, we use a 30-y old reforestation site of outplanted native N-fixing trees () dominated by exotic grass understory, and a neighboring remnant forest dominated by canopy trees and native understory, to assess whether restoration is leading to similar N and C biogeochemical landscapes and soil and plant properties as a target remnant forest ecosystem.
View Article and Find Full Text PDFDieback and mortality in wildland plant species due to climate change have been on the rise in recent decades, and latent fungal pathogens might play a significant role in these events. During a severe multiyear drought, canopy dieback associated with latent pathogens in the Botryosphaeriaceae () family was observed in stands of a dominant shrub species, big berry manzanita (), across chaparral landscapes in California. These fungi are significant pathogens of woody agricultural species, especially in hosts experiencing stress, and have become a threat to economically important crops worldwide.
View Article and Find Full Text PDFTrees can have large effects on soil nutrients in ways that alter succession, particularly in the case of nitrogen-(N)-fixing trees. In Hawai'i, forest restoration relies heavily on use of a native N-fixing tree, Acacia koa (koa), but this species increases soil-available N and likely facilitates competitive dominance of exotic pasture grasses. In contrast, Metrosideros polymorpha ('ōhi'a), the dominant native tree in Hawai'i, is less often planted because it is slow growing; yet it is typically associated with lower soil N and grass biomass, and greater native understory recruitment.
View Article and Find Full Text PDFPremise: Mortality events involving drought and pathogens in natural plant systems are on the rise due to global climate change. In Santa Barbara, California, United States, big berry manzanita (Arctostaphylos glauca) has experienced canopy dieback related to a multi-year drought and infection from fungal pathogens in the Botryosphaeriaceae family. A greenhouse experiment was conducted using Neofusicoccum australe to test the specific influences of drought and fungal infection on A.
View Article and Find Full Text PDFHerbivores alter plant biodiversity (species richness) in many of the world's ecosystems, but the magnitude and the direction of herbivore effects on biodiversity vary widely within and among ecosystems. One current theory predicts that herbivores enhance plant biodiversity at high productivity but have the opposite effect at low productivity. Yet, empirical support for the importance of site productivity as a mediator of these herbivore impacts is equivocal.
View Article and Find Full Text PDFPatterns of woody-plant mortality have been linked to global-scale environmental changes, such as extreme drought, heat stress, more frequent and intense fires, and episodic outbreaks of insects and pathogens. Although many studies have focussed on survival and mortality in response to specific physiological stresses, little attention has been paid to the role of genetic heritability of traits and local adaptation in influencing patterns of plant mortality, especially in non-native species. spp.
View Article and Find Full Text PDFBoom-bust dynamics - the rise of a population to outbreak levels, followed by a dramatic decline - have been associated with biological invasions and offered as a reason not to manage troublesome invaders. However, boom-bust dynamics rarely have been critically defined, analyzed, or interpreted. Here, we define boom-bust dynamics and provide specific suggestions for improving the application of the boom-bust concept.
View Article and Find Full Text PDFFog-drip to the soil is the most obvious contribution of fog to the water budget of an ecosystem, but several studies provide convincing evidence that foliar absorption of fog water through leaf wetting events is also possible. The focus of our research was to assess the relative importance of fog drip and fog immersion (foliar wetting) on leaf gas-exchange rates and photosynthetic capacity of a coastal pine species, Bishop pine (Pinus muricata D.Don), a drought-sensitive species restricted to the fog belt of coastal California and offshore islands.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
May 2016
Ecosystem eutrophication often increases domination by non-natives and causes displacement of native taxa. However, variation in environmental conditions may affect the outcome of interactions between native and non-native taxa in environments where nutrient supply is elevated. We examined the interactive effects of eutrophication, climate variability and climate average conditions on the success of native and non-native plant species using experimental nutrient manipulations replicated at 32 grassland sites on four continents.
View Article and Find Full Text PDFFog water inputs can offset seasonal drought in the Mediterranean climate of coastal California and may be critical to the persistence of many endemic plant species. The ability to predict plant species response to potential changes in the fog regime hinges on understanding the ways that fog can impact plant physiological function across life stages. Our study uses a direct metric of water status, namely plant water potential, to understand differential responses of adult versus sapling trees to seasonal drought and fog water inputs.
View Article and Find Full Text PDFIsolated trees in savannas worldwide are known to modify their local environment and interact directly with neighboring plants. Less is known about how related tree species differ in their impacts on surrounding communities, how the effects of trees vary between years, and how composition might change following loss of the tree. To address these knowledge gaps, we explored the following questions: How do savanna trees influence the surrounding composition of herbaceous plants? Is the influence of trees consistent across different species and years? How does this change following the death of the tree? We surveyed herbaceous species composition and environmental attributes surrounding living and dead evergreen and deciduous Quercus trees in California (USA) savannas across several years that differed in their total precipitation.
View Article and Find Full Text PDFHarsh habitats dominated by invasive species are difficult to restore. Invasive grasses in arid environments slow succession toward more desired composition, yet grass removal exacerbates high light and temperature, making the use of "nurse plants" an appealing strategy. In this study of degraded subtropical woodlands dominated by alien grasses in Hawai'i, we evaluated whether individuals of two native (Dodonaea viscosa, Leptocophylla tameiameia) and one non-native (Morella faya) woody species (1) act as natural nodes of recruitment for native woody species and (2) can be used to enhance survivorship of outplanted native woody species.
View Article and Find Full Text PDFIncreased fire frequency has been shown to promote alien plant invasions in the western United States, resulting in persistent vegetation type change. Short interval fires are widely considered to be detrimental to reestablishment of shrub species in southern California chaparral, facilitating the invasion of exotic annuals and producing "type conversion". However, supporting evidence for type conversion has largely been at local, site scales and over short post-fire time scales.
View Article and Find Full Text PDFAs the main witnesses of the ecological and economic impacts of invasions on ecosystems around the world, ecologists seek to provide the relevant science that informs managers about the potential for invasion of specific organisms in their region(s) of interest. Yet, the assorted literature that could inform such forecasts is rarely integrated to do so, and further, the diverse nature of the data available complicates synthesis and quantitative prediction. Here we present a set of analytical tools for synthesizing different levels of distributional and/or demographic data to produce meaningful assessments of invasion potential that can guide management at multiple phases of ongoing invasions, from dispersal to colonization to proliferation.
View Article and Find Full Text PDFReturning native species to habitats degraded by biological invasions is a critical conservation goal. A leading hypothesis poses that exotic plant dominance is self-reinforced by impacts on ecosystem processes, leading to persistent stable states. Invaders have been documented to modify fire regimes, alter soil nutrients or shift microbial communities in ways that feed back to benefit themselves over competitors.
View Article and Find Full Text PDFInvasions have increased the size of regional species pools, but are typically assumed to reduce native diversity. However, global-scale tests of this assumption have been elusive because of the focus on exotic species richness, rather than relative abundance. This is problematic because low invader richness can indicate invasion resistance by the native community or, alternatively, dominance by a single exotic species.
View Article and Find Full Text PDFA common hypothesis to explain the effect of litter mixing is based on the difference in litter N content between mixed species. Although many studies have shown that litter of invasive non-native plants typically has higher N content than that of native plants in the communities they invade, there has been surprisingly little study of mixing effects during plant invasions. We address this question in south China where Mikania micrantha H.
View Article and Find Full Text PDFAlterations in natural fire patterns have negatively affected fire-prone ecosystems in many ways. The historical range of variability (HRV) concept evolved as a management target for natural vegetation composition and fire regimes in fire-prone ecosystems. HRV-based management inherently assumes that ecosystem resilience is reflected in observed ranges of past vegetation and fire dynamics, typically without knowledge of where thresholds exist beyond these dynamics.
View Article and Find Full Text PDFNon-native, invasive grasses have been linked to altered grass-fire cycles worldwide. Although a few studies have quantified resulting changes in fire activity at local scales, and many have speculated about larger scales, regional alterations to fire regimes remain poorly documented. We assessed the influence of large-scale Bromus tectorum (hereafter cheatgrass) invasion on fire size, duration, spread rate, and interannual variability in comparison to other prominent land cover classes across the Great Basin, USA.
View Article and Find Full Text PDFClimate change and biological invasions are primary threats to global biodiversity that may interact in the future. To date, the hypothesis that climate change will favour non-native species has been examined exclusively through local comparisons of single or few species. Here, we take a meta-analytical approach to broadly evaluate whether non-native species are poised to respond more positively than native species to future climatic conditions.
View Article and Find Full Text PDFBackground And Aims: Global environmental change will affect non-native plant invasions, with profound potential impacts on native plant populations, communities and ecosystems. In this context, we review plant functional traits, particularly those that drive invader abundance (invasiveness) and impacts, as well as the integration of these traits across multiple ecological scales, and as a basis for restoration and management.
Scope: We review the concepts and terminology surrounding functional traits and how functional traits influence processes at the individual level.
Humans and their ancestors are unique in being a fire-making species, but 'natural' (i.e. independent of humans) fires have an ancient, geological history on Earth.
View Article and Find Full Text PDF