Publications by authors named "Carla Ines Tasca"

Neurodegenerative diseases and brain tumours represent important health challenges due to their severe nature and debilitating consequences that require substantial medical care. Interestingly, these conditions share common physiological characteristics, namely increased glutamate, and adenosine transmission, which are often associated with cellular dysregulation and damage. Guanosine, an endogenous nucleoside, is safe and exerts neuroprotective effects in preclinical models of excitotoxicity, along with cytotoxic effects on tumour cells.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a progressive neurodegenerative illness responsible for cognitive impairment and dementia. Accumulation of amyloid-beta (Aβ) peptides in neurons and synapses causes cell metabolism to unbalance, and the production of reactive oxygen species (ROS), leading to neuronal death and cognitive damage. Guanosine is an endogenous nucleoside recognized as a neuroprotective agent since it prevents glutamate-induced neurotoxicity by a mechanism not yet completely elucidated.

View Article and Find Full Text PDF

Neonatal exposure to general anesthetics has been associated with neurotoxicity and morphologic changes in the developing brain. Isoflurane is a volatile anesthetic widely used in pediatric patients to induce general anesthesia, analgesia, and perioperative sedation. In the present study, we investigated the effects of a single neonatal isoflurane (3% in oxygen, 2 h) exposure in rats at postnatal day (PND) 7, in short-term (24 h - PND8) and long-term (adulthood) protocols.

View Article and Find Full Text PDF

Background/aim: Glioblastomas (GBMs) are the most malignant primary brain tumor. New treatment strategies against the disease are urgently needed, as therapies are not completely efficient. In this study, we evaluated the antitumorigenic activity of the carotenoid fucoxanthin (Fx) on human GBM cells in vitro.

View Article and Find Full Text PDF

Degeneration of the (LC), the main source of cerebral noradrenaline (NA), has been reported in diverse neurodegenerative diseases, including Parkinson's diseases (PD). There is increasing evidence indicating the role of NA deficiency in the prefrontal cortex (PFC) and the development of early cognitive impairments in PD. Here, we evaluated whether a selective noradrenergic lesion of LC caused by 6-hydroxydopamine (6-OHDA) may induce memory deficits and neurochemical alterations in the PFC.

View Article and Find Full Text PDF

Stroke is a major cause of disability and death worldwide. Oxygen and glucose deprivation (OGD) in brain tissue preparations can reproduce several pathological features induced by stroke providing a valuable ex vivo protocol for studying the mechanism of action of neuroprotective agents. Guanosine, an endogenous guanine nucleoside, promotes neuroprotection in vivo and in vitro models of neurotoxicity.

View Article and Find Full Text PDF

Neural stem cells can generate new neurons in the mouse adult brain in a complex multistep process called neurogenesis. Several factors regulate this process, including neurotransmitters, hormones, neurotrophic factors, pharmacological agents, and environmental factors. Purinergic signaling, mainly the adenosinergic system, takes part in neurogenesis, being involved in cell proliferation, migration, and differentiation.

View Article and Find Full Text PDF

The dorsolateral striatum (DLS) processes motor and non-motor functions and undergoes extensive dopaminergic degeneration in Parkinson's disease (PD). Beyond the nigrostriatal pathway, dopaminergic degeneration also affects other brain areas including the pre-frontal cortex (PFC) and hippocampus, which have been associated with the appearance of anhedonia and depression at pre-motor phases of PD. Herein, using behavioral and biochemical approaches, we investigated the protective effects of guanosine (GUO) (7.

View Article and Find Full Text PDF

The functions of Sertoli cells, which structurally and functionally support ongoing spermatogenesis, are effectively modulated by thyroid hormones, amongst other molecules. We investigated the mechanism of action of rT on calcium (Ca) uptake in Sertoli cells by means of in vitro acute incubation. In addition, we performed electrophysiological recordings of potassium efflux in order to understand the cell repolarization, coupled to the calcium uptake triggered by rT.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by loss of dopaminergic neurons in substantia nigra pars compacta which induces severe motor symptoms. 6-OHDA is a neurotoxin widely used in PD animal models due to its high affinity by dopamine transporter, its rapid non-enzymatic auto-oxidation which generates reactive oxygen species (ROS), oxidative stress, and for induced mitochondrial dysfunction. We previously reported an in vitro protocol of 6-OHDA-induced toxicity in brain regions slices, as a simple and sensitive assay to screen for protective compounds related to PD.

View Article and Find Full Text PDF

The neonatal exposure to general anesthetics has been associated with neuronal apoptosis and dendritic spines morphologic changes in the developing brain. Ketamine, a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist, is widely used in pediatric patients to induce general anesthesia, analgesia, and perioperative sedation. In the present study, we investigated short- and long-term effects of a single ketamine (20 mg/kg, s.

View Article and Find Full Text PDF

Gliomas are a malignant tumor group whose patients have survival rates around 12 months. Among the treatments are the alkylating agents as temozolomide (TMZ), although gliomas have shown multiple resistance mechanisms for chemotherapy. Guanosine (GUO) is an endogenous nucleoside involved in extracellular signaling that presents neuroprotective effects and also shows the effect of inducing differentiation in cancer cells.

View Article and Find Full Text PDF

Thiol homeostasis has a critical role in the maintenance of proper cellular functions and survival, being coordinated by the action of several reductive enzymes, including glutathione (GSH)/glutathione reductase (GR) and thioredoxin (Trx)/thioredoxin reductase (TrxR) systems. Here, we investigated the effects of the GR inhibitor 2-acetylamino-3-[4-(2-acetylamino-2-carboxyethylsulfanylthiocarbonylamino)phenylthiocarbamoylsulfanyl]propionic acid (2-AAPA) on the activity of thiol reductases (GR and TrxR), redox balance and mitochondrial function of A172 glioblastoma cells. 2-AAPA inhibited cell GR (IC=6.

View Article and Find Full Text PDF

Folic acid (folate) is a vitamin of the B-complex group crucial for neurological function. Considering that excitotoxicity and cell death induced by glutamate are involved in many disorders, the potential protective effect of folic acid on glutamate-induced cell damage in rat hippocampal slices and the possible intracellular signaling pathway involved in such effect were investigated. The treatment of hippocampal slices with folic acid (100 μM) significantly abrogated glutamate (1 mM)-induced reduction of cell viability measured by MTT reduction assay and inhibited glutamate-induced D-[H]-aspartate release.

View Article and Find Full Text PDF

Atorvastatin is a cholesterol-lowering statin that has been shown to exert several pleiotropic effects in the nervous system as a neuroprotective and antidepressant-like agent. Antidepressant-like effect of atorvastatin in mice is mediated by glutamatergic and serotoninergic receptors, although the precise intracellular signaling pathways involved are unknown. PI3K/Akt/GSK-3β/mTOR signaling pathway has been associated to neurobiology of depression and seems to be modulated by some pharmacological antidepressant strategies.

View Article and Find Full Text PDF

Glioblastoma multiforme is the main and most frequent tumor in adults' central nervous system. With a survival average of 5% two years after diagnosis, this type of cancer is a main health problem. Substances like the chalcones have been tested in order to develop new treatments.

View Article and Find Full Text PDF

Environmental enrichment (EE) is a non-pharmacological manipulation that promotes diverse forms of benefits in the central nervous system of captive animals. It is thought that EE influences animal behavior in a specie-(strain)-specific manner. Since rodents in general present different behaviors during distinct periods of the day, in this study we aimed to investigate the influence of time-of-day on behavioral repertoire of Swiss mice that reared in EE.

View Article and Find Full Text PDF

SUMO (small ubiquitin-like modifier) conjugation is a critically important control process in all eukaryotic cells, because it acts as a biochemical switch and regulates the function of hundreds of proteins in many different pathways. Although the diverse functional consequences and molecular targets of SUMOylation remain largely unknown, SUMOylation is becoming increasingly implicated in the pathophysiology of Alzheimer's disease (AD). Apart from the central SUMO-modified disease-associated proteins, such as amyloid precursor protein, amyloid β, and tau, SUMOylation also regulates several other processes underlying AD.

View Article and Find Full Text PDF

Quinolinic acid (QA) is a NMDA receptor agonist implicated in pathological conditions, such as neurodegenerative diseases and epilepsy. Time-course responses of different brain regions after QA i.c.

View Article and Find Full Text PDF
Article Synopsis
  • Statins, which inhibit cholesterol synthesis, have been studied for their potential neuroprotective effects, but their specific impacts on behavior are not well understood.
  • Research analyzed the effects of atorvastatin and simvastatin on mice's cognitive performance through various tests; both drugs improved performance in the object location test without altering other behavioral responses.
  • The cognitive benefits observed were linked to beta-adrenergic receptor modulation, suggesting that statins like atorvastatin and simvastatin may enhance spatial memory in rodents.
View Article and Find Full Text PDF

Brain tolerance or resistance can be achieved by interventions before and after injury through potential toxic agents used in low stimulus or dose. For brain diseases, the neuroprotection paradigm desires an attenuation of the resulting motor, cognitive, emotional, or memory deficits following the insult. Preconditioning is a well-established experimental and clinical translational strategy with great beneficial effects, but limited applications.

View Article and Find Full Text PDF

Inosine is an endogenous nucleoside that has anti-inflammatory and antinociceptive properties. Inosine is a metabolite of adenosine, and some of its actions suggest the involvement of adenosine A1 receptors (A1Rs). The purpose of this study was to better understand mechanisms of inosine-induced antinociception by investigating the role of A1Rs and purine metabolism inhibitors.

View Article and Find Full Text PDF

Previous studies demonstrate that glyphosate exposure is associated with oxidative damage and neurotoxicity. Therefore, the mechanism of glyphosate-induced neurotoxic effects needs to be determined. The aim of this study was to investigate whether Roundup(®) (a glyphosate-based herbicide) leads to neurotoxicity in hippocampus of immature rats following acute (30min) and chronic (pregnancy and lactation) pesticide exposure.

View Article and Find Full Text PDF

Familial hypercholesterolemia is caused by inherited genetic abnormalities that directly or indirectly affect the function of the low-density lipoprotein (LDL) receptor. This condition is characterized by defective catabolism of LDL which results in increased plasma cholesterol concentrations and premature coronary artery disease. Nevertheless, there is increasing preclinical and clinical evidence indicating that familial hypercholesterolemia subjects show a particularly high incidence of mild cognitive impairment.

View Article and Find Full Text PDF

New unconventional approaches to the development of antimicrobial drugs must target inhibition of infection stages leading to host colonisation or virulence itself, rather than bacterial viability. Amongst the most promising unconventional targets for the development of new antimicrobial drugs is bacterial adherence and biofilm formation as well as their control system, the quorum-sensing (QS) system, a mechanism of communication used to co-ordinate bacterial activities. Here we describe the evaluation of synthetic organic compounds as bacterial biofilm inhibitors against a panel of clinically relevant Gram-positive and Gram-negative bacterial strains.

View Article and Find Full Text PDF