Recent research has identified growth differentiation factor 15 (GDF15) as a crucial factor in various physiological and pathological processes, particularly in energy balance regulation. While the role of GDF15 in modulating energy metabolism through hindbrain GDNF family receptor alpha-like (GFRAL) signaling has been extensively studied, emerging evidence suggests direct peripheral metabolic actions of GDF15. Using knockout mouse models, we investigated GDF15 and GFRAL's roles in adipose tissue metabolism.
View Article and Find Full Text PDFObjective: The incidence of gestational diabetes mellitus (GDM) and metabolic disorders during pregnancy are increasing globally. This has resulted in increased use of therapeutic interventions such as metformin to aid in glycemic control during pregnancy. Even though metformin can cross the placental barrier, its impact on offspring brain development remains poorly understood.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
November 2023
Mitochondria play multifaceted roles in cellular function, and impairments across domains of mitochondrial biology are known to promote cellular integrated stress response (ISR) pathways as well as systemic metabolic adaptations. However, the temporal dynamics of specific mitochondrial ISR related to physiological variations in tissue-specific energy demands remains unknown. Here, we conducted a comprehensive 24-hour muscle and plasma profiling of male and female mice with ectopic mitochondrial respiratory uncoupling in skeletal muscle (m-transgenic, TG).
View Article and Find Full Text PDFGrowth differentiation factor 15 (GDF15) is a mitochondrial stress-induced cytokine that modulates energy balance in an endocrine manner. However, the importance of its brainstem-restricted receptor GDNF family receptor alpha-like (GFRAL) to mediate endocrine GDF15 signaling to the brain upon mitochondrial dysfunction is still unknown. Using a mouse model with muscle-specific mitochondrial dysfunction, we here show that GFRAL is required for activation of systemic energy metabolism via daytime-restricted anorexia but not responsible for muscle wasting.
View Article and Find Full Text PDFThe mammalian system of energy balance regulation is intrinsically rhythmic with diurnal oscillations of behavioral and metabolic traits according to the 24 h day/night cycle, driven by cellular circadian clocks and synchronized by environmental or internal cues such as metabolites and hormones associated with feeding rhythms. Mitochondria are crucial organelles for cellular energy generation and their biology is largely under the control of the circadian system. Whether mitochondrial status might also feed-back on the circadian system, possibly via mitokines that are induced by mitochondrial stress as endocrine-acting molecules, remains poorly understood.
View Article and Find Full Text PDFMitochondrial dysfunction promotes metabolic stress responses in a cell-autonomous as well as organismal manner. The wasting hormone growth differentiation factor 15 (GDF15) is recognized as a biomarker of mitochondrial disorders, but its pathophysiological function remains elusive. To test the hypothesis that GDF15 is fundamental to the metabolic stress response during mitochondrial dysfunction, we investigated transgenic mice (Ucp1-TG) with compromised muscle-specific mitochondrial OXPHOS capacity via respiratory uncoupling.
View Article and Find Full Text PDFPhysical activity is an important contributor to muscle adaptation and metabolic health. Growth differentiation factor 15 (GDF15) is established as cellular and nutritional stress-induced cytokine but its physiological role in response to active lifestyle or acute exercise is unknown. Here, we investigated the metabolic phenotype and circulating GDF15 levels in lean and obese male C57Bl/6J mice with long-term voluntary wheel running (VWR) intervention.
View Article and Find Full Text PDFCerebral cavernous malformations (CCMs) are vascular lesions in the central nervous system causing strokes and seizures which currently can only be treated through neurosurgery. The disease arises through changes in the regulatory networks of endothelial cells that must be comprehensively understood to develop alternative, non-invasive pharmacological therapies. Here, we present the results of several unbiased small-molecule suppression screens in which we applied a total of 5,268 unique substances to mutant worm, zebrafish, mouse, or human endothelial cells.
View Article and Find Full Text PDFAquaporins occupy an essential role in sustaining the salt/water balance in various cells types and tissues. Here, we present new insights into expression and regulation in . We show, that upon exposure to osmotic stress, exhibits a distinct expression pattern within the excretory cell compared to other aquaporins expressed.
View Article and Find Full Text PDF