The problem of high-resolution image volume reconstruction from reduced frequency acquisition sequences has drawn significant attention from the scientific community because of its practical importance in medical diagnosis. To address this issue, several reconstruction strategies have been recently proposed, which aim to recover the missing information either by exploiting the spatio-temporal correlations of the image series, or by imposing suitable constraints on the reconstructed image volume. The main contribution of this paper is to combine both these strategies in a compressed sensing framework by exploiting the gradient sparsity of the image volume.
View Article and Find Full Text PDF