In digenic inheritance, pathogenic variants in two genes must be inherited together to cause disease. Only very few examples of digenic inheritance have been described in the neuromuscular disease field. Here we show that predicted deleterious variants in SRPK3, encoding the X-linked serine/argenine protein kinase 3, lead to a progressive early onset skeletal muscle myopathy only when in combination with heterozygous variants in the TTN gene.
View Article and Find Full Text PDFMutations in the sarcomeric protein titin, encoded by TTN, are emerging as a common cause of myopathies. The diagnosis of a TTN-related myopathy is, however, often not straightforward due to clinico-pathological overlap with other myopathies and the prevalence of TTN variants in control populations. Here, we present a combined clinico-pathological, genetic and biophysical approach to the diagnosis of TTN-related myopathies and the pathogenicity ascertainment of TTN missense variants.
View Article and Find Full Text PDFWe present eight families with arthrogryposis multiplex congenita and myopathy bearing a TTN intron 213 extended splice-site variant (NM_001267550.1:c.39974-11T>G), inherited in trans with a second pathogenic TTN variant.
View Article and Find Full Text PDFObjective: To characterize the clinical phenotype, genetic origin, and muscle pathology of patients with the c.1387A>G mutation.
Methods: Standardized clinical data were collected for all patients known to the authors with c.
Objective: Comprehensive clinical characterization of congenital titinopathy to facilitate diagnosis and management of this important emerging disorder.
Methods: Using massively parallel sequencing we identified 30 patients from 27 families with 2 pathogenic nonsense, frameshift and/or splice site TTN mutations in trans. We then undertook a detailed analysis of the clinical, histopathological and imaging features of these patients.
Collagen VI-related dystrophy (collagen VI-RD) is a rare neuromuscular condition caused by mutations in the , or genes. The phenotypic spectrum includes early-onset Ullrich congenital muscular dystrophy, adult-onset Bethlem myopathy and an intermediate phenotype. The disorder is characterised by distal hyperlaxity and progressive muscle weakness, joint contractures and respiratory insufficiency.
View Article and Find Full Text PDFIntroduction: Herein we provide a comprehensive overview of bone health in facioscapulohumeral muscular dystrophy (FSHD).
Methods: Ninety-four adult individuals with FSHD type 1 from 2 sites were included in this cross-sectional study. Clinical characteristics and determinants of bone health were examined.
Background: The senses of touch and proprioception evoke a range of perceptions and rely on the ability to detect and transduce mechanical force. The molecular and neural mechanisms underlying these sensory functions remain poorly defined. The stretch-gated ion channel PIEZO2 has been shown to be essential for aspects of mechanosensation in model organisms.
View Article and Find Full Text PDFIntroduction: In preparation for future clinical trials, we determined the reliability, relationship to measures of disease severity, and consistency across sites of the 6 Minute Walk Test (6MWT) in patients with facioscapulohumeral muscular dystrophy (FSHD).
Methods: Genetically defined and clinically affected FSHD participants at 2 sites performed the 6MWT, the Timed Up and Go, and the 30 foot Go/Timed 10 meter test as measures of mobility using standard procedures.
Results: Eight-six participants representing the full range of severity performed the 6MWT.
Congenital muscular dystrophies with hypoglycosylation of α-dystroglycan (α-DG) are a heterogeneous group of disorders often associated with brain and eye defects in addition to muscular dystrophy. Causative variants in 14 genes thought to be involved in the glycosylation of α-DG have been identified thus far. Allelic mutations in these genes might also cause milder limb-girdle muscular dystrophy phenotypes.
View Article and Find Full Text PDFMutations in LMNA cause a variety of diseases affecting striated muscle including autosomal Emery-Dreifuss muscular dystrophy (EDMD), LMNA-associated congenital muscular dystrophy (L-CMD), and limb-girdle muscular dystrophy type 1B (LGMD1B). Here, we describe novel and recurrent LMNA mutations identified in 50 patients from the United States and Canada, which is the first report of the distribution of LMNA mutations from a large cohort outside Europe. This augments the number of LMNA mutations known to cause EDMD by 16.
View Article and Find Full Text PDF