Publications by authors named "Carla Garza-Lombo"

Introduction: Ozone (O) is an air pollutant associated with Alzheimer's disease (AD) risk. The lung-brain axis is implicated in O-associated glial and amyloid pathobiology; however, the role of disease-associated astrocytes (DAAs) in this process remains unknown.

Methods: The O-induced astrocyte phenotype was characterized in 5xFAD mice by spatial transcriptomics and proteomics.

View Article and Find Full Text PDF

The mechanisms underlying how urban air pollution affects Alzheimer's disease (AD) are largely unknown. Ozone (O3) is a reactive gas component of air pollution linked to increased AD risk, but is confined to the respiratory tract after inhalation, implicating the peripheral immune response to air pollution in AD neuropathology. Here, we demonstrate that O3 exposure impaired the ability of microglia, the brain's parenchymal immune cells, to associate with and form a protective barrier around Aβ plaques, leading to augmented dystrophic neurites and increased Aβ plaque load.

View Article and Find Full Text PDF

Organisms have metabolic pathways responsible for eliminating endogenous and exogenous toxicants. Generally, we associate the liver par excellence as the organ in charge of detoxifying the body; however, this process occurs in all tissues, including the brain. Due to the presence of the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB), the Central Nervous System (CNS) is considered a partially isolated organ, but similar to other organs, the CNS possess xenobiotic transporters and metabolic pathways associated with the elimination of xenobiotic agents.

View Article and Find Full Text PDF

Gulf War Illness (GWI) is a chronic, multi-symptom peripheral and CNS condition with persistent microglial dysregulation, but the mechanisms driving the continuous neuroimmune pathology are poorly understood. The alarmin HMGB1 is an autocrine and paracrine pro-inflammatory signal, but the role of circulating HMGB1 in persistent neuroinflammation and GWI remains largely unknown. Using the LPS model of the persistent microglial pro-inflammatory response, male C57Bl/6J mice injected with LPS (5 mg/kg IP) exhibited persistent changes in microglia morphology and elevated pro-inflammatory markers in the hippocampus, cortex, and midbrain 7 days after LPS injection, while the peripheral immune response had resolved.

View Article and Find Full Text PDF

Autophagy is a ubiquitous homeostatic mechanism for the degradation or turnover of cellular components. Degradation of mitochondria via autophagy (mitophagy) is involved in a number of physiological processes including cellular homeostasis, differentiation and aging. Upon stress or injury, mitophagy prevents the accumulation of damaged mitochondria and the increased steady state levels of reactive oxygen species leading to oxidative stress and cell death.

View Article and Find Full Text PDF

Arsenic is a metalloid found in groundwater as a byproduct of soil/rock erosion and industrial and agricultural processes. This xenobiotic elicits its toxicity through different mechanisms, and it has been identified as a toxicant that affects virtually every organ or tissue in the body. In the central nervous system, exposure to arsenic can induce cognitive dysfunction.

View Article and Find Full Text PDF

Glutathione (GSH) is the most abundant intracellular antioxidant. GSH depletion leads to oxidative stress and neuronal damage in the central nervous system (CNS). In mice, the acute systemic inhibition of GSH synthesis by L-buthionine-S-R-sulfoximine (BSO) triggers a protective response and a subsequent increase in the CNS GSH content.

View Article and Find Full Text PDF

The mechanistic (or mammalian) target of rapamycin (mTOR) and the adenosine monophosphate-activated protein kinase (AMPK) regulate cell survival and metabolism in response to diverse stimuli such as variations in amino acid content, changes in cellular bioenergetics, oxygen levels, neurotrophic factors and xenobiotics. This Opinion paper aims to discuss the current state of knowledge regarding how mTOR and AMPK regulate the metabolism and survival of brain cells and the close interrelationship between both signaling cascades. It is now clear that both mTOR and AMPK pathways regulate cellular homeostasis at multiple levels.

View Article and Find Full Text PDF
Article Synopsis
  • Glutathione (GSH) is crucial for protecting cells from oxidative stress and detoxification, mainly in the brain, where its synthesis depends on cysteine and glutamate availability.
  • Cystine is transported through the blood-brain barrier into cells, where it is converted to cysteine, which then travels into neurons to support GSH production.
  • The study found that depleting GSH in mice alters levels of the EAAT3 transporter in the cerebellum, activating pathways (mTOR and NGF/TrkA) that enhance cysteine transport for increased GSH synthesis.
View Article and Find Full Text PDF

Significance: Essential metals such as copper, iron, manganese, and zinc play a role as cofactors in the activity of a wide range of processes involved in cellular homeostasis and survival, as well as during organ and tissue development. Throughout our life span, humans are also exposed to xenobiotic metals from natural and anthropogenic sources, including aluminum, arsenic, cadmium, lead, and mercury. It is well recognized that alterations in the homeostasis of essential metals and an increased environmental/occupational exposure to xenobiotic metals are linked to several neurological disorders, including neurodegeneration and neurodevelopmental alterations.

View Article and Find Full Text PDF

The kinase mammalian target of rapamycin (mTOR) integrates signals triggered by energy, stress, oxygen levels, and growth factors. It regulates ribosome biogenesis, mRNA translation, nutrient metabolism, and autophagy. mTOR participates in various functions of the brain, such as synaptic plasticity, adult neurogenesis, memory, and learning.

View Article and Find Full Text PDF