The high demand and economic relevance of cephalopods make them prone to food fraud, including related to harvest location. Therefore, there is a growing need to develop tools to unequivocally confirm their capture location. Cephalopod beaks are nonedible, making this material ideal for traceability studies as it can also be removed without a loss of commodity economic value.
View Article and Find Full Text PDFIn the context of expanding fish production and complex distribution chains, traceability, provenance and food safety tools are becoming increasingly important. Here, we compare the elemental fingerprints of gilthead seabream () muscle from wild and different aquaculture productions (semi-intensive earth ponds and intensive sea cages from two locations) to confirm their origin and evaluate the concentrations of elements with regulatory thresholds (Cu, Hg, Pb and Zn). Using a chemometric approach based on multi-elemental signatures, the sample origin was determined with an overall accuracy of 90%.
View Article and Find Full Text PDFProvenance and traceability are crucial aspects of seafood safety, supporting managers and regulators, and allowing consumers to have clear information about the origin of the seafood products they consume. In the present study, we developed an innovative spectral approach based on total reflection X-ray fluorescence (TXRF) spectroscopy to identify the provenance of seafood and present a case study for five economically relevant marine species harvested in different areas of the Atlantic Portuguese coast: three bony fish-, , and ; one elasmobranch-; one cephalopod-. Applying a first-order Savitzky-Golay transformation to the TXRF spectra reduced the potential matrix physical effects on the light scattering of the X-ray beam while maintaining the spectral differences inherent to the chemical composition of the samples.
View Article and Find Full Text PDFIn recent years, the Antarctic territory has seen a rise in the number of tourists and scientists. This has led to an increase in the anthropogenic footprint in Antarctic ecosystems, namely in terms of emerging contaminants, such as Biocides, Persistent Organic Pollutants (POPs) as well as Pharmaceutical and Personal Care Products (PPCPs). Yet scarce information on the presence of these emerging contaminants is available for trophic compartments, especially the phytoplankton community.
View Article and Find Full Text PDFAcross the globe, heat waves are getting more intense and frequent. Diatoms are a major group of microalgae at the base of the marine food webs and an important source of long chain polyunsaturated fatty acids that are transferred through the food web. The present study investigates the possible impacts of temperature increase on lipid classes and expression of genes encoding enzymes related to lipid metabolism in Phaeodactylum tricornutum.
View Article and Find Full Text PDFMercury naturally contaminated environments, like Deception Island (Antarctica), are field labs to study the physiological consequences of chronic Hg-exposure at the community level. Deception Island volcanic vents lead to a continuous chronic exposure of the phytoplanktonic communities to potentially toxic Hg concentrations. Comparing Hg-contaminated areas (Fumarolas Bay - FB, Gabriel de Castilla station - GdC station), no significant differences in chlorophyll a concentrations were detected, indicating that biomass production was not impaired by Hg-exposure despite the high Hg levels found in the cells.
View Article and Find Full Text PDFChanges in biomass and photosynthesis of a diatom-dominated microphytobenthos (MPB) intertidal community were studied over a diel emersion period using a combination of O2 and scalar irradiance microprofiling, variable chlorophyll (Chl) fluorescence, and pigment analysis. The MPB biomass in the photic zone (0-0.5 mm) of the sediment exposed to low irradiance (150 μmol photons m(-2) s(-1)) showed a >2-fold increase during the first hours of the emersion period, reaching >0.
View Article and Find Full Text PDFThis work reports changes on cell number, growth rate, trace element content, chlorophyll a (Chl a) and carotenoid concentrations, and laser-induced fluorescence (LIF) spectra of Phaeodactylum tricornutum exposed to Co, Ni, Cu, Zn, Cd, Hg, Pb, and a mixture of all elements combined (Mix). The total levels of trace elements associated with the cells were significantly higher in the exposed than in control ones. Concomitantly, specific cell growth was significantly lower in exposed P.
View Article and Find Full Text PDF