Publications by authors named "Carla G Moutinho"

Worldwide, bacterial resistance to chemical antibiotics has reached such a high level that endangers public health. Presently, the adoption of alternative strategies that promote the elimination of resistant microbial strains from the environment is of utmost importance. This review discusses and analyses several (potential) alternative strategies to current chemical antibiotics.

View Article and Find Full Text PDF

Infections associated with health care services are nowadays widespread and, associated to the progressive emergence of microorganisms resistant to conventional chemical antibiotics, are major causes of morbidity and mortality. One of the most representative microorganisms in this scenario is the bacterium Pseudomonas aeruginosa, which alone is responsible for ca. 13-15% of all nosocomial infections.

View Article and Find Full Text PDF

This review attempts to provide an updated compilation of studies reported in the literature pertaining to production of nanocarriers encasing peptides and/or proteins, in a way that helps the reader direct a bibliographic search and develop an integrated perspective of the subject. Highlights are given to bioactive proteins and peptides, with a special focus on those from dairy sources (including physicochemical characteristics and properties, and biopharmaceutical application possibilities of e.g.

View Article and Find Full Text PDF

The work here described aimed to find out the location of the different species of two families of pharmaceutical substances, namely two beta-blockers (atenolol and nadolol) and two benzodiazepines (midazolam and nitrazepam) in synthetic (sodium dodecyl sulphate, SDS) and natural (bile salts-sodium cholate and sodium deoxycholate) micellar aggregate solutions. Electronic spin resonance spectroscopy studies were carried out, at 25 degrees C and at an ionic strength of 0.10 M in NaCl, using 5-, 12- and 16-doxylstearic acid probes (AS).

View Article and Find Full Text PDF

In this work the critical micelle concentrations (cmc) of four bile salts, sodium cholate, sodium glycocholate, sodium deoxycholate, and sodium glycodeoxycholate, are determined and presented. Three independent noninvasive methodologies (potentiometry, derivative spectrophotometry, and light scattering) were used for cmc determination, at 25 degrees C with ionic strength adjusted to 0.10 M with NaCl.

View Article and Find Full Text PDF