Publications by authors named "Carla Cruz Paredes"

Climate change is predicted to cause milder winters and thus exacerbate soil freeze-thaw perturbations in the subarctic, recasting the environmental challenges that soil microorganisms need to endure. Historical exposure to environmental stressors can facilitate the microbial resilience to new cycles of that same stress. However, whether and how such microbial memory or stress legacy can modulate microbial responses to cycles of frost remains untested.

View Article and Find Full Text PDF

Climate change predictions suggest that arctic and subarctic ecosystems will be particularly affected by rising temperatures and extreme weather events, including severe heat waves. Temperature is one of the most important environmental factors controlling and regulating microbial decomposition in soils; therefore, it is critical to understand its impact on soil microorganisms and their feedback to climate warming. We conducted a warming experiment in a subarctic birch forest in North Sweden to test the effects of summer heat waves on the thermal trait distributions that define the temperature dependences for microbial growth and respiration.

View Article and Find Full Text PDF

Temperature is a major determinant of biological process rates, and microorganisms are key regulators of ecosystem carbon (C) dynamics. Temperature controls microbial rates of decomposition, and thus warming can stimulate C loss, creating positive feedback to climate change. If trait distributions that define temperature relationships of microbial communities can adapt to altered temperatures, they could modulate the strength of this feedback, but if this occurs remains unclear.

View Article and Find Full Text PDF

Microbial resistance to antibiotics is a growing challenge to human health. Recent evidence has indicated that antibiotic resistance can be co-selected for by exposure to heavy metals in agricultural soils. It remains unknown if this is a concern in other environments contaminated by metals.

View Article and Find Full Text PDF

Isotope labeling enables the detection and quantification of nutrient fluxes between soil and plants through arbuscular mycorrhizal (AM) fungi. Here we describe the use of radioactive isotopes, P and P, to study the uptake of P from soil by AM fungal mycelium and its transfer to the host plant through the mycorrhizal pathway.

View Article and Find Full Text PDF

In the face of global climate change there is an increasing demand for biofuel, which exerts pressure on production and thus management of biofuel plantations. The intensification of whole-tree harvest from biofuel plantations increases export of nutrients. Returning ash from biofuel combustion to the forest plantations can amend the soil nutrient status and thus facilitate sustainable forest management.

View Article and Find Full Text PDF

Most plants form symbiotic associations with arbuscular mycorrhizal fungi (AMF). AMF increase the uptake of plant nutrients by extending their extra-radical mycelium (ERM) in the soil where other groups of microorganisms may suppress the activity of the ERM. However, little is known about such suppression in natural soils.

View Article and Find Full Text PDF

Arbuscular mycorrhizal fungi (AMF) colonise roots of most plants; their extra-radical mycelium (ERM) extends into the soil and acquires nutrients for the plant. The ERM coexists with soil microbial communities and it is unresolved whether these communities stimulate or suppress the ERM activity. This work studied the prevalence of suppressed ERM activity and identified main components behind the suppression.

View Article and Find Full Text PDF

Reutilizing biomass ashes in agriculture can substitute inputs of P from finite primary sources. However, recycling of ashes is disputed due to their content of toxic substances such as heavy metals. This study evaluates the potential risk of replacing easily soluble inorganic P fertilizer with P in biomass ashes in a barley crop grown on soil with adequate P status.

View Article and Find Full Text PDF

The present study investigates the potential benefits of the Mexican medicinal plant Lopezia racemosa (Onagraceae). Extracts and fractions from aerial parts of this plant were assessed to determine their antibacterial, antifungal, antiparasitic, anti-inflammatory and cytotoxic activities in vitro. Aerial parts of the plant were extracted with various solvents and fractionated accordingly.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: To study the potential benefit of the traditional Mexican medicinal plant Galium mexicanum Kunth (Rubiaceae). Hexane, chloroform, and methanol extracts as well as various fractions from these extracts were tested to determine antibacterial, antifungal, antiparasitic or anti-inflammatory activities in vitro.

Materials And Methods: Aerial parts of the plant were extracted with various solvents and fractionated accordingly.

View Article and Find Full Text PDF