Publications by authors named "Carla Bromuro"

The ability of recombinant, SARS-CoV-2 Spike (S) protein to modulate the production of two COVID-19 relevant, pro-inflammatory cytokines (IL-6 and IFN-γ) in PBMC cultures of healthy, pre-COVID-19 subjects was investigated. We observed that cytokine production was largely and diversely modulated by the S protein depending on antigen or mitogen stimulation, as well as on the protein source, insect (S-in) or human (S-hu) cells. While both proteins co-stimulated cytokine production by polyclonally CD3-activated T cells, PBMC activation by the mitogenic lectin Concanavalin A (Con A) was up-modulated by S-hu protein and down-modulated by S-in protein.

View Article and Find Full Text PDF

Candidemia (bloodstream invasion by species) is a major fungal disease in humans. Despite the recent progress in diagnosis and treatment, therapeutic options are limited and under threat of antimicrobial resistance. The disease mortality remains high (around 40%).

View Article and Find Full Text PDF

Background: Infections caused by fungi are often refractory to conventional therapies and urgently require the development of novel options, such as immunotherapy. To produce therapeutic antibodies, a plant-based expression platform is an attractive biotechnological strategy compared to mammalian cell cultures. In addition to whole plants, hairy roots (HR) cultures can be used, representing an expression system easy to build up, with indefinite growth while handled under containment conditions.

View Article and Find Full Text PDF

Immunoglobulins A (IgA) are crucially involved in protection of human mucosal surfaces from microbial pathogens. In this work, we devised and expressed in plants recombinant chimeric antifungal antibodies (Abs) of isotype A (IgA1, IgA2, and scFvFcA1), derived from a murine mAb directed to the fungal cell wall polysaccharide β-glucan which had proven able to confer protection against multiple pathogenic fungi. All recombinant IgA (rIgA) were expressed and correctly assembled in dimeric form in plants and evaluated for yield, antigen-binding efficiency and antifungal properties in vitro, in comparison with a chimeric IgG1 version.

View Article and Find Full Text PDF

Sera from candidemic and non-candidemic subjects were examined for antibodies against the cell wall β1,3- and β1,6-glucans, as well as the β-glucan-associated protein MP65 of Candida species. Although antibodies against each of the above components were detected in all subjects, candidemic patients had lower antibody titers against β1,3-glucan, but higher antibody titers against β1,6-glucan and MP65, than non-candidemic subjects. The elevated levels of anti-β1,6-glucan and -MP65 antibodies found in candidemic patients were independent on the patient risk category, APACHE II score, presence of co-morbidities, β1,3-glucanemia level, Candida isolate, and antifungal treatment.

View Article and Find Full Text PDF

There is a real medical need of new diagnostic tools for the early recognition of invasive Candida infections. We exploited a rather simple and rapid redox methodology to construct a bispecific monoclonal antibody (bsmAb) that combines a monoclonal antibody (mAb) directed against 1,3-β-D-glucan, a well-known, pan-fungal diagnostic biomarker, with a mAb recognizing MP65, a major immunogenic mannoprotein secreted by C.albicans and other Candida species.

View Article and Find Full Text PDF

Several pathogens have been described to enter host cells via cholesterol-enriched membrane lipid raft microdomains. We found that disruption of lipid rafts by the cholesterol-extracting agent methyl-β-cyclodextrin or by the cholesterol-binding antifungal drug Amphotericin B strongly impairs the uptake of the fungal pathogen Candida albicans by human monocytes, suggesting a role of raft microdomains in the phagocytosis of the fungus. Time lapse confocal imaging indicated that Dectin-1, the C-type lectin receptor that recognizes Candida albicans cell wall-associated β-glucan, is recruited to lipid rafts upon Candida albicans uptake by monocytes, supporting the notion that lipid rafts act as an entry platform.

View Article and Find Full Text PDF

There is an increasing interest in the development of therapeutic antibodies (Ab) to improve the control of fungal pathogens, but none of these reagents is available for clinical use. We previously described a murine monoclonal antibody (mAb 2G8) targeting β-glucan, a cell wall polysaccharide common to most pathogenic fungi, which conferred significant protection against Candida albicans, Aspergillus fumigatus and Cryptococcus neoformans in animal models. Transfer of this wide-spectrum, antifungal mAb into the clinical setting would allow the control of most frequent fungal infections in many different categories of patients.

View Article and Find Full Text PDF

The interaction of PAMPs with cells of the innate immune system shapes the adaptive host response. Here, we report that β-glucan, a major fungal PAMP purified from Candida albicans, stimulates human DCs to secrete a pro-Th17 cytokine pattern. Notably, β-glucan induces PGE2 production, which has been shown to play a pivotal role in Th17 cell expansion.

View Article and Find Full Text PDF

A laminarin-diphtheria toxoid (CRM197) conjugate vaccine conferred protection against fungal infections in mice. We have now generated novel beta-glucan-CRM197 vaccines, with either natural (Curd-CRM197) or synthetic linear (15mer-CRM197), or beta-(1,6)-branched (17mer-CRM197) beta-(1,3)-oligosaccharides, formulated with the human-acceptable adjuvant MF59. Curd-CRM197 and 15mer-CRM197 conjugates, which induced high titers of anti-beta-(1,3)-glucan IgG, but no antibodies against beta-(1,6)-glucan, conferred protection to mice lethally challenged with C.

View Article and Find Full Text PDF

Anti-beta-glucan antibodies elicited by a laminarin-conjugate vaccine confer cross-protection to mice challenged with major fungal pathogens such as Candida albicans, Aspergillus fumigatus and Cryptococcus neoformans. To gain insights into protective beta-glucan epitope(s) and protection mechanisms, we studied two anti-beta-glucan monoclonal antibodies (mAb) with identical complementarity-determining regions but different isotypes (mAb 2G8, IgG2b and mAb 1E12, IgM). C.

View Article and Find Full Text PDF

The structure of immunogenic and immunomodulatory cell wall glucans of Candida albicans is commonly interpreted in terms of a basic polysaccharide consisting of a beta-D-(1-->3)-linked glucopyranosyl backbone possessing beta-D-(1-->6)-linked side chains of varying distribution and length. This proposed molecular architecture has been re-evaluated by the present study on the products of selective enzymolysis of insoluble C. albicans glucan particles (GG).

View Article and Find Full Text PDF

In this study we tested the in vitro and in vivo anti-Cryptococcus neoformans activity of an antilaminarin (anti-beta-glucan) monoclonal antibody (MAb 2G8) (immunoglobulin G2b) which was previously shown to inhibit the growth of beta-glucan-exposing Candida albicans cells. Here we show that MAb 2G8 binds to the cell wall of C. neoformans and inhibits its growth to an extent comparable to that observed for C.

View Article and Find Full Text PDF

To generate a vaccine to protect against a variety of human pathogenic fungi, we conjugated laminarin (Lam), a well-characterized but poorly immunogenic beta-glucan preparation from the brown alga Laminaria digitata, with the diphtheria toxoid CRM197, a carrier protein used in some glyco-conjugate bacterial vaccines. This Lam-CRM conjugate proved to be immunogenic and protective as immunoprophylactic vaccine against both systemic and mucosal (vaginal) infections by Candida albicans. Protection probably was mediated by anti-beta-glucan antibodies as demonstrated by passive transfer of protection to naive mice by the whole immune serum, the immune vaginal fluid, and the affinity-purified anti-beta-glucan IgG fractions, as well as by administration of a beta-glucan-directed IgG2b mAb.

View Article and Find Full Text PDF

Mice immunized with heat-inactivated, whole yeast-form cells (Y cells) of Candida albicans developed intense, specific humoral and cell-mediated immune responses. However, they were modestly protected against a lethal challenge by the fungus, and their sera did not confer passive protection upon nonimmunized animals. Surprisingly, this immune serum conferred an elevated degree of passive protection to normal and SCID mice when preadsorbed on whole C.

View Article and Find Full Text PDF