Publications by authors named "Carla Boccaccio"

Article Synopsis
  • The text discusses the limitations of traditional methods for deriving glioblastoma stem-like cells (GSCs), which do not maintain the diversity of these cells in lab models.
  • It presents a new protocol that starts with whole tumor tissue to successfully grow heterogeneous GSC cultures in vitro.
  • The document outlines steps for isolating, maintaining, and analyzing these GSCs, recommending reference to the work of De Bacco et al. for comprehensive guidance.
View Article and Find Full Text PDF

Glioblastoma (GBM) is known as an intractable, highly heterogeneous tumor encompassing multiple subclones, each supported by a distinct glioblastoma stem cell (GSC). The contribution of GSC genetic and transcriptional heterogeneity to tumor subclonal properties is debated. In this study, we describe the systematic derivation, propagation, and characterization of multiple distinct GSCs from single, treatment-naive GBMs (GSC families).

View Article and Find Full Text PDF

In colorectal cancer, the mechanisms underlying tumor aggressiveness require further elucidation. Taking advantage of a large panel of human metastatic colorectal cancer xenografts and matched stem-like cell cultures (m-colospheres), here we show that the overexpression of microRNA 483-3p (miRNA-483-3p; also known as MIR-483-3p), encoded by a frequently amplified gene locus, confers an aggressive phenotype. In m-colospheres, endogenous or ectopic miRNA-483-3p overexpression increased proliferative response, invasiveness, stem cell frequency, and resistance to differentiation.

View Article and Find Full Text PDF

The genetic changes sustaining the development of cancers of unknown primary (CUP) remain elusive. The whole-exome genomic profiling of 14 rigorously selected CUP samples did not reveal specific recurring mutation in known driver genes. However, by comparing the mutational landscape of CUPs with that of most other human tumor types, it emerged a consistent enrichment of changes in genes belonging to the axon guidance KEGG pathway.

View Article and Find Full Text PDF

Purpose: Current glioma diagnostic guidelines call for molecular profiling to stratify patients into prognostic and treatment subgroups. In case the tumor tissue is inaccessible, cerebrospinal fluid (CSF) has been proposed as a reliable tumor DNA source for liquid biopsy. We prospectively investigated the use of CSF for molecular characterization of newly diagnosed gliomas.

View Article and Find Full Text PDF

The aim of this study is to envisage a streamlined pathological workup to rule out CUPs in patients presenting with MUOs. Sixty-four MUOs were classified using standard histopathology. Clinical data, immunocytochemical markers, and results of molecular analysis were recorded.

View Article and Find Full Text PDF
Article Synopsis
  • The MET oncogene's tyrosine kinase receptor has an extracellular domain called PSI, which has been previously unexplored in terms of function despite being evolutionarily conserved.
  • Recent experiments reveal that the MET extracellular PSI domain exhibits disulfide isomerase activity, crucial for the maturation process of the MET precursor protein into its active forms, which are involved in signaling pathways.
  • Mutations in the PSI domain hinder the cleavage and maturation of the MET protein, leading to its accumulation in the Golgi apparatus and preventing essential biological processes triggered by its ligand, Hepatocyte Growth Factor (HGF).
View Article and Find Full Text PDF

is an oncogene encoding the tyrosine kinase receptor for hepatocyte growth factor (HGF). Upon ligand binding, MET activates multiple signal transducers, including PI3K/AKT, STAT3, and MAPK. When mutated or amplified, becomes a "driver" for the onset and progression of cancer.

View Article and Find Full Text PDF

By exploiting an integrated experimental platform based on patient-derived cancer stem cells, we identified a glioblastoma subset characterized by inheritable Erb-B2 Receptor Tyrosine Kinase 3 (ERBB3) overexpression, metabolic dependency on ERBB3 signaling, and liability to ERBB3 targeting. We provide insights on why some glioblastomas may rely on ERBB3 and how to recognize them.

View Article and Find Full Text PDF

In glioblastoma (GBM), the most frequent and lethal brain tumor, therapies suppressing recurrently altered signaling pathways failed to extend survival. However, in patient subsets, specific genetic lesions can confer sensitivity to targeted agents. By exploiting an integrated model based on patient-derived stem-like cells, faithfully recapitulating the original GBMs in vitro and in vivo, here, we identify a human GBM subset (∼9% of all GBMs) characterized by ERBB3 overexpression and nuclear accumulation.

View Article and Find Full Text PDF

Cancers of unknown primary (CUPs), featuring metastatic dissemination in the absence of a primary tumor, are a biological enigma and a fatal disease. We propose that CUPs are a distinct, yet unrecognized, pathological entity originating from stem-like cells endowed with peculiar and shared properties. These cells can be isolated in vitro (agnospheres) and propagated in vivo by serial transplantation, displaying high tumorigenicity.

View Article and Find Full Text PDF

Blockade of epidermal growth factor receptor (EGFR) causes tumor regression in some patients with metastatic colorectal cancer (mCRC). However, residual disease reservoirs typically remain even after maximal response to therapy, leading to relapse. Using patient-derived xenografts (PDXs), we observed that mCRC cells surviving EGFR inhibition exhibited gene expression patterns similar to those of a quiescent subpopulation of normal intestinal secretory precursors with Paneth cell characteristics.

View Article and Find Full Text PDF

Previous studies showed that the hepatocyte growth factor (HGF)-Met receptor axis plays long-lasting cardioprotection against doxorubicin anti-cancer therapy. Here, we explored the mechanism(s) underlying the HGF protective effect. DNA damage was monitored by histone H2AX phosphorylation and apoptosis by proteolytic cleavage of caspase 3.

View Article and Find Full Text PDF

Cancer of unknown primary (CUP) is an obscure disease characterized by multiple metastases in the absence of a primary tumor. No consensus has been reached whether CUPs are simply generated from cancers that cannot be detected or whether they are the manifestation of a still unknown nosological entity. Here, we report the complete expression and genetic analysis of multiple synchronous metastases harvested at warm autopsy of a patient with CUP.

View Article and Find Full Text PDF

Glioblastomas (GBM) can be classified into three major transcriptional subgroups (proneural, mesenchymal, classical), underlying different molecular alterations, prognosis, and response to therapy. However, transcriptional analysis is not routinely feasible and assessment of a simplified method for glioblastoma subclassification is required. We propose an integrated molecular and immunohistochemical approach aimed at identifying GBM subtypes in routine paraffin-embedded material.

View Article and Find Full Text PDF

Background And Purpose: Doxorubicin anti-cancer therapy is associated with cardiotoxicity, resulting from DNA damage response (DDR). Hepatocyte growth factor (HGF) protects cardiomyocytes from injury, but its effective use is compromised by low biodistribution. In this study, we have investigated whether the activation of the HGF receptor-encoded by the Met gene-by an agonist monoclonal antibody (mAb) could protect against doxorubicin-induced cardiotoxicity.

View Article and Find Full Text PDF

Cancer of unknown primary (CUP) is an umbrella term used to classify a heterogeneous group of metastatic cancers based on the absence of an identifiable primary tumor. Clinically, CUPs are characterized by a set of distinct features comprising early metastatic dissemination in an atypical pattern, an aggressive clinical course, poor response to empiric chemotherapy and, consequently, a short life expectancy. Two opposing strategies to change the dismal prognosis for the better are pursued.

View Article and Find Full Text PDF

Cell-free circulating tumor DNA (ct-DNA) reflecting the whole tumor spatial and temporal heterogeneity currently represents the most promising candidate for liquid biopsy strategy in glioma. Unlike other solid tumors, it is now widely accepted that the best source of ct-DNA for glioma patients is the cerebrospinal fluid, since blood levels are usually low and detectable only in few cases. A cerebrospinal fluid ct-DNA liquid biopsy approach may virtually support all the stages of glioma management, from facilitating molecular diagnosis when surgery is not feasible, to monitoring tumor response, identifying early recurrence, tracking longitudinal genomic evolution, providing a new molecular characterization at recurrence and allowing patient selection for targeted therapies.

View Article and Find Full Text PDF

The MET oncogene encodes an unconventional receptor tyrosine kinase with pleiotropic functions: it initiates and sustains neoplastic transformation when genetically altered ('oncogene addiction') and fosters cancer cell survival and tumour dissemination when transcriptionally activated in the context of an adaptive response to adverse microenvironmental conditions ('oncogene expedience'). Moreover, MET is an intrinsic modulator of the self-renewal and clonogenic ability of cancer stem cells ('oncogene inherence'). Here, we provide the latest findings on MET function in cancer by focusing on newly identified genetic abnormalities in tumour cells and recently described non-mutational MET activities in stromal cells and cancer stem cells.

View Article and Find Full Text PDF

Patient-derived xenografts ("") of colorectal cancer metastases have been essential to identify genetic determinants of resistance to the anti-EGFR antibody cetuximab and to explore new therapeutic strategies. From xenopatients, a genetically annotated collection of stem-like cultures ("") was generated and characterized for response to targeted therapies. Xenospheres underwent exome-sequencing analysis, gene expression profile, and targeted treatments to assess genetic, biological, and pharmacologic correspondence with xenopatients, and to investigate nongenetic biomarkers of therapeutic resistance.

View Article and Find Full Text PDF

Glioblastoma (GBM) is a lethal tumor that displays remarkable genetic heterogeneity. It is also known that GBM contains a cell hierarchy driven by GBM stem-like cells (GSCs), responsible for tumor generation, therapeutic resistance, and relapse. An important and still open issue is whether phylogenetically related GSCs can be found in matched primary and recurrent GBMs, and reflect tumor genetic evolution under therapeutic pressure.

View Article and Find Full Text PDF

Stromal content heavily impacts the transcriptional classification of colorectal cancer (CRC), with clinical and biological implications. Lineage-dependent stromal transcriptional components could therefore dominate over more subtle expression traits inherent to cancer cells. Since in patient-derived xenografts (PDXs) stromal cells of the human tumour are substituted by murine counterparts, here we deploy human-specific expression profiling of CRC PDXs to assess cancer-cell intrinsic transcriptional features.

View Article and Find Full Text PDF

Glioblastoma (GBM) contains stem-like cells (GSCs) known to be resistant to ionizing radiation and thus responsible for therapeutic failure and rapidly lethal tumor recurrence. It is known that GSC radioresistance relies on efficient activation of the DNA damage response, but the mechanisms linking this response with the stem status are still unclear. Here, we show that the MET receptor kinase, a functional marker of GSCs, is specifically expressed in a subset of radioresistant GSCs and overexpressed in human GBM recurring after radiotherapy.

View Article and Find Full Text PDF

The inflammatory cytokine Tumor Necrosis Factor Alpha (TNF-α) is known to trigger invasive growth, a physiological property for tissue healing, turning into a hallmark of progression in cancer. However, the invasive response to TNF-α relies on poorly understood molecular mechanisms. We thus investigated whether it involves the MET oncogene, which regulates the invasive growth program by encoding the tyrosine kinase receptor for Hepatocyte Growth Factor (HGF).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: