Cell-based therapies have been making great advances toward clinical reality. Despite the increase in trial activity, few therapies have successfully navigated late-phase clinical trials and received market authorization. One possible explanation for this is that additional tools and technologies to enable their development have only recently become available.
View Article and Find Full Text PDFAims: The field of cell-based therapies for human diseases is currently evolving from promising treatment options to established therapeutic concepts. The design of the nonclinical development program for cell-based products, intended to provide a rationale for treatment and to gain insight into the safety profile, is challenging because of limitations caused by species-specificity. The elements of the nonclinical package for cell-based products were evaluated using advice reports from the European Medicines Agency database from 2013 to 2018 to identify the approach followed for nonclinical development of these products.
View Article and Find Full Text PDFRegulatory T cells (Tregs) have a prominent role in the control of immune homeostasis. Pharmacological impact on their activity or balance with effector T cells could contribute to (impaired) clinical responses or adverse events. Monitoring treatment-related effects on T cell subsets may therefore be part of (pre-)clinical studies for medicinal products.
View Article and Find Full Text PDFStem cell therapy holds the promise to treat degenerative diseases, cancer and repair of damaged tissues for which there are currently no or limited therapeutic options. The potential of stem cell therapies has long been recognised and the creation of induced pluripotent stem cells (iPSC) has boosted the stem cell field leading to increasing development and scientific knowledge. Despite the clinical potential of stem cell based medicinal products there are also potential and unanticipated risks.
View Article and Find Full Text PDFRadiotherapy is one of the most successful cancer therapies. Here the effect of irradiation on antigen presentation by MHC class I molecules was studied. Cell surface expression of MHC class I molecules was increased for many days in a radiation dose-dependent manner as a consequence of three responses.
View Article and Find Full Text PDFAg presentation by MHC class I is a highly inefficient process because cytosolic peptidases destroy most peptides after proteasomal generation. Various mechanisms shape the MHC class I peptidome. We define a new one: intracellular peptide stability.
View Article and Find Full Text PDFAt the cell surface, major histocompatibility complex (MHC) class I molecules present fragments of intracellular antigens to the immune system. This is the end result of a cascade of events initiated by multiple steps of proteolysis. Only a small part of the fragments escapes degradation by interacting with the peptide transporter associated with antigen presentation and is translocated into the endoplasmic reticulum lumen for binding to MHC class I molecules.
View Article and Find Full Text PDFThe absolute and relative abundance of major histocompatibility complex class I-presented viral epitopes is important in the induction and maintenance of antiviral cytotoxic-T-lymphocyte (CTL) responses. We demonstrate that the supra-abundant HLA-A*0201-restricted peptide KLWESPQEI of the measles virus nonstructural C protein induces strong gamma interferon CD8(+)-T-cell responses in children with acute measles. However, longitudinal analysis indicates that these responses are only short-lived.
View Article and Find Full Text PDFInfectious agents have been implied as causative environmental factors in the development of autoimmunity. However, the exact nature of their involvement remains unknown. We describe a possible mechanism for the activation of autoreactive T cells induced by measles virus (MV) infection.
View Article and Find Full Text PDFFollowing measles virus (MV) infection, viral peptides are presented to CTL by MHC class I molecules on infected antigen presenting cells at widely different epitope densities. Whereas three MV epitopes (MV-M(211-219), MV-F(438-446) and MV-H(30-38)) derived from different structural proteins occur at regular densities, one peptide derived from the non-structural C protein (MV-C(84-92)) fully dominates the MV peptide display in HLA class I molecules on end-stage-infected human B cells. Here we demonstrate that this hierarchy in MV epitope density is not a constant, but varies with progression of infection.
View Article and Find Full Text PDFPeptides derived from measles virus (MV) are presented by MHC class I molecules at widely divergent levels, but it is currently unknown how functional these levels are. Here, for the first time, we studied the natural occurrence and the underlying processing events of a known MV CTL epitope derived from the fusion glycoprotein (MV-F) and restricted via HLA-B*2705. Using MHC-peptide elution of MV-infected cells followed by sensitive mass spectrometry we determined the naturally occurring sequence to be RRYPDAVYL, corresponding to MV-F(438-446).
View Article and Find Full Text PDF