GSHO 2096 is a near isogenic barley line with extremely high grain β-amylase activity, a desirable trait in the malting and brewing industry. High levels of grain β-amylase activity are caused by a surge in endosperm-specific β-amylase (Bmy1) gene expression during the early stages of grain development with high expression levels persisting throughout development. Origins of the high β-amylase activity trait are perplexing considering GSHO 2096 is not supposed to have grain β-amylase activity.
View Article and Find Full Text PDFBarley ranks fourth in global cereal production and is primarily grown for animal feed and malt. Hordeins, the principal barley seed storage proteins, are homologous to wheat gluten and when ingested elicit an immune response in people with Coeliac disease. Risø 1508 is a chemically induced barley mutant with low hordein levels imparted by the lys3.
View Article and Find Full Text PDFThe non-seed plants (e.g., charophyte algae, bryophytes, and ferns) have multiple human uses, but their contributions to agriculture and research have lagged behind seed plants.
View Article and Find Full Text PDFThe transcription factor NODULE INCEPTION (NIN) has been studied extensively for its multiple roles in root nodule symbiosis within plants of the nitrogen-fixing clade (NFC) that associate with soil bacteria, such as rhizobia and Frankia. However, NIN homologs are present in plants outside the NFC, suggesting a role in other developmental processes. Here, we show that the biofuel crop Populus sp.
View Article and Find Full Text PDFCurr Opin Plant Biol
October 2022
Chromatin organization is important for many DNA-templated processes in eukaryotic cells such as replication and transcription. Recent studies have uncovered the capacity of epigenetic modifications, phase separation, and nuclear architecture and spatial positioning to regulate chromatin organization in both plants and animals. Here, we provide an overview of the recent progress made in understanding how chromatin is organized within the nucleus at both the local and global levels with respect to the regulation of transcriptional silencing in plants.
View Article and Find Full Text PDFmRNA translation is the growth rate-limiting step in genome expression. Target of rapamycin (TOR) evolved a central regulatory role in eukaryotes as a signaling hub that monitors nutrient availability to maintain homeostasis and promote growth, largely by increasing the rate of translation initiation and protein synthesis. The dynamic pathways engaged by TOR to regulate translation remain debated even in well-studied yeast and mammalian models, however, despite decades of intense investigation.
View Article and Find Full Text PDFPlant flowers have a functional life span during which pollination and fertilization occur to ensure seed and fruit development. Once flower senescence is initiated, the potential to set seed or fruit is irrevocably lost. In maize, silk strands are the elongated floral stigmas that emerge from the husk-enveloped inflorescence to intercept airborne pollen.
View Article and Find Full Text PDFThe present study aimed to establish an early model of the malting barley transcriptome, which describes the expression of genes and their ontologies, identify the period during malting with the largest dynamic shift in gene expression for future investigation, and to determine the expression patterns of all starch degrading enzyme genes relevant to the malting and brewing industry. Large dynamic increases in gene expression occurred early in malting with differential expressed genes enriched for cell wall and starch hydrolases amongst many malting related categories. Twenty-five of forty starch degrading enzyme genes were differentially expressed in the malting barley transcriptome including eleven α-amylase genes, six β-amylase genes, three α-glucosidase genes, and all five starch debranching enzyme genes.
View Article and Find Full Text PDFCorteva Agriscience™ ran a discovery research program to identify biotech leads for improving maize Agronomic Traits such as yield, drought tolerance, and nitrogen use efficiency. Arising from many discovery sources involving thousands of genes, this program generated over 3331 DNA cassette constructs involving a diverse set of circa 1671 genes, whose transformed maize events were field tested from 2000 to 2018 under managed environments designed to evaluate their potential for commercialization. We demonstrate that a subgroup of these transgenic events improved yield in field-grown elite maize breeding germplasm.
View Article and Find Full Text PDFPlant Biotechnol J
November 2020
The Zea Mays BIG GRAIN 1 HOMOLOG 1 (ZM-BG1H1) was ectopically expressed in maize. Elite commercial hybrid germplasm was yield tested in diverse field environment locations representing commercial models. Yield was measured in 101 tests across all 4 events, 26 locations over 2 years, for an average yield gain of 355 kg/ha (5.
View Article and Find Full Text PDFHeterodera glycines, the soybean cyst nematode, is the number one pathogen of soybean (Glycine max). This nematode infects soybean roots and forms an elaborate feeding site in the vascular cylinder. H.
View Article and Find Full Text PDFCrop improvement for yield and drought tolerance is challenging due to the complex genetic nature of these traits and environmental dependencies. This study reports that transgenic over-expression of Zea mays AR GOS1 (ZAR1) enhanced maize organ growth, grain yield, and drought-stress tolerance. The ZAR1 transgene exhibited environmental interactions, with yield increase under Temperate Dry and yield reduction under Temperate Humid or High Latitude environments.
View Article and Find Full Text PDFTwo key determinants of plant and organ size are cell number and cell size, and altering either one may affect the plant organ size, but cell number control often plays a predominant role in natural populations. Domesticated crops usually have larger fruit and harvested organ sizes than wild progenitors. Crop yields have increased significantly by breeding, often via heterosis, which is associated with increased plant and organ size primarily achieved by cell number increases.
View Article and Find Full Text PDFBackground: The nuclear envelope that separates the contents of the nucleus from the cytoplasm provides a surface for chromatin attachment and organization of the cortical nucleoplasm. Proteins associated with it have been well characterized in many eukaryotes but not in plants. SUN (Sad1p/Unc-84) domain proteins reside in the inner nuclear membrane and function with other proteins to form a physical link between the nucleoskeleton and the cytoskeleton.
View Article and Find Full Text PDFBackground: Plant diurnal rhythms are vital environmental adaptations to coordinate internal physiological responses to alternating day-night cycles. A comprehensive view of diurnal biology has been lacking for maize (Zea mays), a major world crop.
Methodology: A photosynthetic tissue, the leaf, and a non-photosynthetic tissue, the developing ear, were sampled under natural field conditions.
The barley (Hordeum vulgare) brittle stem mutants, fs2, designated X054 and M245, have reduced levels of crystalline cellulose compared with their parental lines Ohichi and Shiroseto. A custom-designed microarray, based on long oligonucleotide technology and including genes involved in cell wall metabolism, revealed that transcript levels of very few genes were altered in the elongation zone of stem internodes, but these included a marked decrease in mRNA for the HvCesA4 cellulose synthase gene of both mutants. In contrast, the abundance of several hundred transcripts changed in the upper, maturation zones of stem internodes, which presumably reflected pleiotropic responses to a weakened cell wall that resulted from the primary genetic lesion.
View Article and Find Full Text PDFGenes involved in cell number regulation may affect plant growth and organ size and, ultimately, crop yield. The tomato (genus Solanum) fruit weight gene fw2.2, for instance, governs a quantitative trait locus that accounts for 30% of fruit size variation, with increased fruit size chiefly due to increased carpel ovary cell number.
View Article and Find Full Text PDFBenzoxazinoids were identified in the early 1960s as secondary metabolites of the grasses that function as natural pesticides and exhibit allelopathic properties. Benzoxazinoids are synthesized in seedlings and stored as glucosides (glcs); the main aglucone moieties are 2,4-dihydroxy-2H-1,4-benzoxazin-3(4H)-one (DIBOA) and 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA). The genes of DIBOA-glc biosynthesis have previously been isolated and the enzymatic functions characterized.
View Article and Find Full Text PDFThe phosphatidylethanolamine-binding proteins (PEBPs) represent an ancient protein family found across the biosphere. In animals they are known to act as kinase and serine protease inhibitors controlling cell growth and differentiation. In plants the most extensively studied PEBP genes, the Arabidopsis (Arabidopsis thaliana) FLOWERING LOCUS T (FT) and TERMINAL FLOWER1 (TFL1) genes, function, respectively, as a promoter and a repressor of the floral transition.
View Article and Find Full Text PDFThe 12-oxo-phytodienoic acid reductases (OPRs) are enzymes that catalyze the reduction of double bonds adjacent to an oxo group in alpha,beta-unsaturated aldehydes or ketones. Some of them have very high substrate specificity and are part of the octadecanoid pathway which convert linolenic acid to the phytohormone jasmonic acid (JA). Sequencing and analysis of ESTs and genomic sequences from available private and public databases revealed that the maize genome encodes eight OPR genes.
View Article and Find Full Text PDFA defense-inducible maize gene was discovered through global mRNA profiling analysis. Its mRNA expression is induced by pathogens and defense-related conditions in various tissues involving both resistant and susceptible interactions. These include Cochliobolus heterostrophus and Cochliobolus carbonum infection, ultraviolet light treatment, the Les9 disease lesion mimic background, and plant tissues engineered to express flavonoids or the avirulence gene avrRxv.
View Article and Find Full Text PDFBenzoxazinoids are secondary metabolites of grasses that function as natural pesticides. While many steps of DIMBOA biosynthesis have been elucidated, the mechanism of the introduction of OCH(3)-group at the C-7 position was unknown. Inhibitor experiments in Triticum aestivum and Zea mays suggest that a 2-oxoglutarate-dependent dioxygenase catalyses the hydroxylation reaction at C-7.
View Article and Find Full Text PDFHomologues of barley Mlo encode the only family of seven-transmembrane (TM) proteins in plants. Their topology, subcellular localization, and sequence diversification are reminiscent of those of G-protein coupled receptors (GPCRs) from animals and fungi. We present a computational analysis of MLO family members based on 31 full-size and 3 partial sequences, which originate from several monocot species, the dicot Arabidopsis thaliana, and the moss Ceratodon purpureus.
View Article and Find Full Text PDFCytoplasmic male sterility is a maternally transmitted inability to produce viable pollen. Male sterility occurs in Texas (T) cytoplasm maize as a consequence of the premature degeneration of the tapetal cell layer during microspore development. This sterility can be overcome by the combined action of two nuclear restorer genes, rf1 and rf2a.
View Article and Find Full Text PDF