Chromosome instability (CIN) is frequently observed in many tumors. The breakage-fusion-bridge (BFB) cycle has been proposed to be one of the main drivers of CIN during tumorigenesis and tumor evolution. However, the detailed mechanisms for the individual steps of the BFB cycle warrants further investigation.
View Article and Find Full Text PDFWhen replication forks encounter DNA lesions that cause polymerase stalling, a checkpoint pathway is activated. The ATR-dependent intra-S checkpoint pathway mediates detection and processing of sites of replication fork stalling to maintain genomic integrity. Several factors involved in the global checkpoint pathway have been identified, but the response to a single replication fork barrier (RFB) is poorly understood.
View Article and Find Full Text PDFWhen replication forks encounter DNA lesions that cause polymerase stalling a checkpoint pathway is activated. The ATR-dependent intra-S checkpoint pathway mediates detection and processing of sites of replication fork stalling to maintain genomic integrity. Several factors involved in the global checkpoint pathway have been identified, but the response to a single replication fork barrier (RFB) is poorly understood.
View Article and Find Full Text PDFCommon fragile sites (CFSs) are difficult-to-replicate genomic regions that form gaps and breaks on metaphase chromosomes under replication stress. They are hotspots for chromosomal instability in cancer. Repetitive sequences located at CFS loci are inefficiently copied by replicative DNA polymerase (Pol) delta.
View Article and Find Full Text PDFTelomere dysfunction causes chromosomal instability which is associated with many cancers and age-related diseases. The non-coding telomeric repeat-containing RNA (TERRA) forms a structural and regulatory component of the telomere that is implicated in telomere maintenance and chromosomal end protection. The basic N-terminal Gly/Arg-rich (GAR) domain of telomeric repeat-binding factor 2 (TRF2) can bind TERRA but the structural basis and significance of this interaction remains poorly understood.
View Article and Find Full Text PDFTelomeres protect chromosome ends from inappropriately activating the DNA damage and repair responses. Primary microcephaly is a key clinical feature of several human telomere disorder syndromes, but how microcephaly is linked to dysfunctional telomeres is not known. Here, we show that the microcephalin 1/BRCT-repeats inhibitor of hTERT (MCPH1/BRIT1) protein, mutated in primary microcephaly, specifically interacts with the TRFH domain of the telomere binding protein TRF2.
View Article and Find Full Text PDFThe telomeric shelterin protein telomeric repeat-binding factor 2 (TRF2) recruits origin recognition complex (ORC) proteins, the foundational building blocks of DNA replication origins, to telomeres. We seek to determine whether TRF2-recruited ORC proteins give rise to functional origins in telomere repeat tracts. We find that reduction of telomeric recruitment of ORC2 by expression of an ORC interaction-defective TRF2 mutant significantly reduces telomeric initiation events in human cells.
View Article and Find Full Text PDFFragile X syndrome (FXS) is a neurodevelopmental disorder caused by mutations in the FMR1 gene and deficiency of a functional FMRP protein. FMRP is known as a translation repressor whose nuclear function is not understood. We investigated the global impact on genome stability due to FMRP loss.
View Article and Find Full Text PDFHuman DNA polymerase delta (Pol δ) forms a holoenzyme complex with the DNA sliding clamp proliferating cell nuclear antigen (PCNA) to perform its essential roles in genome replication. Here, we utilize live-cell single-molecule tracking to monitor Pol δ holoenzyme interaction with the genome in real time. We find holoenzyme assembly and disassembly in vivo are highly dynamic and ordered.
View Article and Find Full Text PDFIn the mammalian genome, certain genomic loci/regions pose greater challenges to the DNA replication machinery (i.e., the replisome) than others.
View Article and Find Full Text PDFCommon fragile sites (CFSs) are genomic regions that are unstable under conditions of replicative stress. Although the characteristics of CFSs that render them vulnerable to stress are associated mainly with replication, the cellular pathways that protect CFSs during replication remain unclear. Here, we identify and describe a role for FANCD2 as a trans-acting facilitator of CFS replication, in the absence of exogenous replicative stress.
View Article and Find Full Text PDFKaposi's sarcoma associated herpesvirus (KSHV) establishes life-long latent infection by persisting as an extra-chromosomal episome in the infected cells and by maintaining its genome in dividing cells. KSHV achieves this by tethering its epigenome to the host chromosome by latency associated nuclear antigen (LANA), which binds in the terminal repeat (TR) region of the viral genome. Sequence analysis of the TR, a GC-rich DNA element, identified several potential Quadruplex G-Rich Sequences (QGRS).
View Article and Find Full Text PDFBased on its in vitro unwinding activity on G-quadruplex (G4) DNA, the Bloom syndrome-associated helicase BLM is proposed to participate in telomere replication by aiding fork progression through G-rich telomeric DNA. Single molecule analysis of replicated DNA (SMARD) was used to determine the contribution of BLM helicase to telomere replication. In BLM-deficient cells, replication forks initiating from origins within the telomere, which copy the G-rich strand by leading strand synthesis, moved slower through the telomere compared with the adjacent subtelomere.
View Article and Find Full Text PDFEukaryotic genome duplication relies on origins of replication, distributed over multiple chromosomes, to initiate DNA replication. A recent genome-wide analysis of Trypanosoma brucei, the etiological agent of sleeping sickness, localized its replication origins to the boundaries of multigenic transcription units. To better understand genomic replication in this organism, we examined replication by single molecule analysis of replicated DNA.
View Article and Find Full Text PDFFragile X syndrome (FXS) is caused by CGG repeat expansion that leads to FMR1 silencing. Women with a premutation allele are at risk of having a full mutation child with FXS. To investigate the mechanism of repeat expansion, we examined the relationship between a single-nucleotide polymorphism (SNP) variant that is linked to repeat expansion in haplogroup D and a replication origin located ∼53 kb upstream of the repeats.
View Article and Find Full Text PDFPhosphorylation of replication protein A (RPA) by Cdk2 and the checkpoint kinase ATR (ATM and Rad3 related) during replication fork stalling stabilizes the replisome, but how these modifications safeguard the fork is not understood. To address this question, we used single-molecule fiber analysis in cells expressing a phosphorylation-defective RPA2 subunit or lacking phosphatase activity toward RPA2. Deregulation of RPA phosphorylation reduced synthesis at forks both during replication stress and recovery from stress.
View Article and Find Full Text PDFFragile X syndrome (FXS) is caused by a CGG repeat expansion in the FMR1 gene that appears to occur during oogenesis and during early embryogenesis. One model proposes that repeat instability depends on the replication fork direction through the repeats such that (CNG)n hairpin-like structures form, causing DNA polymerase to stall and slip. Examining DNA replication fork progression on single DNA molecules at the endogenous FMR1 locus revealed that replication forks stall at CGG repeats in human cells.
View Article and Find Full Text PDFProper resolution of stalled replication forks is essential for genome stability. Purification of FBH1, a UvrD DNA helicase, identified a physical interaction with replication protein A (RPA), the major cellular single-stranded DNA (ssDNA)-binding protein complex. Compared with control cells, FBH1-depleted cells responded to replication stress with considerably fewer double-strand breaks (DSBs), a dramatic reduction in the activation of ATM and DNA-PK and phosphorylation of RPA2 and p53, and a significantly increased rate of survival.
View Article and Find Full Text PDFThe temporal order of replication of mammalian chromosomes appears to be linked to their functional organization, but the process that establishes and modifies this order during cell differentiation remains largely unknown. Here, we studied how the replication of the Igh locus initiates, progresses, and terminates in bone marrow pro-B cells undergoing B cell commitment. We show that many aspects of DNA replication can be quantitatively explained by a mechanism involving the stochastic firing of origins (across the S phase and the Igh locus) and extensive variations in their firing rate (along the locus).
View Article and Find Full Text PDFTelomeric and adjacent subtelomeric heterochromatin pose significant challenges to the DNA replication machinery. Little is known about how replication progresses through these regions in human cells. Using single molecule analysis of replicated DNA (SMARD), we delineate the replication programs-i.
View Article and Find Full Text PDFCohesin is a protein complex originally identified for its role in sister chromatid cohesion, although increasing evidence portrays it also as a major organizer of interphase chromatin. Vertebrate cohesin consists of Smc1, Smc3, Rad21/Scc1 and either stromal antigen 1 (SA1) or SA2. To explore the functional specificity of these two versions of cohesin and their relevance for embryonic development and cancer, we generated a mouse model deficient for SA1.
View Article and Find Full Text PDFKaposi's sarcoma associated herpesvirus (KSHV), an etiologic agent of Kaposi's sarcoma, Body Cavity Based Lymphoma and Multicentric Castleman's Disease, establishes lifelong latency in infected cells. The KSHV genome tethers to the host chromosome with the help of a latency associated nuclear antigen (LANA). Additionally, LANA supports replication of the latent origins within the terminal repeats by recruiting cellular factors.
View Article and Find Full Text PDFOriP, the latent origin of Epstein-Barr virus (EBV), consists of two essential elements: the dyad symmetry (DS) and the family of repeats (FR). The function of these elements has been predominantly analyzed in plasmids transfected into transformed cells. Here, we examined the molecular functions of DS in its native genomic context and at an ectopic position in the mini-EBV episome.
View Article and Find Full Text PDF