Objective: Resting Fluorine-18 fluorodeoxyglucose positron emission tomography (FDG-PET) brain imaging and neuropsychological testing were used to investigate the usefulness of a spatial navigation task (SNT) as a performance benchmark for cognitive impairment related to anti-N-methyl D-aspartate (anti-NMDA) receptor antibodies (DNRAb) in SLE.
Methods: Neuropsychological assessments, including a desktop 3-D virtual SNT, were performed on 19 SLE participants and 9 healthy control (HC) subjects. SLE participants had stable disease activity and medication doses and no history of neuropsychiatric illness or current use of mind-altering medications.
To address challenges in the diagnosis of cognitive dysfunction (CD) related to systemic lupus erythematosus-associated (SLE-associated) autoimmune mechanisms rather than confounding factors, we employed an integrated approach, using resting-state functional (FDG-PET) and structural (diffusion tensor imaging [DTI]) neuroimaging techniques and cognitive testing, in adult SLE patients with quiescent disease and no history of neuropsychiatric illness. We identified resting hypermetabolism in the sensorimotor cortex, occipital lobe, and temporal lobe of SLE subjects, in addition to validation of previously published resting hypermetabolism in the hippocampus, orbitofrontal cortex, and putamen/GP/thalamus. Regional hypermetabolism demonstrated abnormal interregional metabolic correlations, associated with impaired cognitive performance, and was stable over 15 months.
View Article and Find Full Text PDF