Publications by authors named "Carl Robert Rankin"

Background: Evidence supports a role for the gut-brain axis in Parkinson's disease (PD). Mice overexpressing human wild type α- synuclein (Thy1-haSyn) exhibit slow colonic transit prior to motor deficits, mirroring prodromal constipation in PD. Identifying molecular changes in the gut could provide both biomarkers for early diagnosis and gut-targeted therapies to prevent progression.

View Article and Find Full Text PDF

Background & Aims: Alterations in microRNA (miRNA) and in the intestinal barrier are putative risk factors for irritable bowel syndrome (IBS). We aimed to identify differentially expressed colonic mucosal miRNAs, their targets in IBS compared to healthy controls (HCs), and putative downstream pathways.

Methods: Twenty-nine IBS patients (15 IBS with constipation [IBS-C], 14 IBS with diarrhea [IBS-D]), and 15 age-matched HCs underwent sigmoidoscopy with biopsies.

View Article and Find Full Text PDF

The inflammatory bowel diseases (IBD) are a complex set of chronic gastrointestinal inflammatory conditions arising from the interplay of genetic and environmental factors. This study focuses on noncoding RNA transcripts as potential mediators of IBD pathophysiology. One particular gene, interferon γ-antisense 1 (), has been consistently observed to be elevated in the intestinal mucosa of patients with actively inflamed IBD versus healthy controls.

View Article and Find Full Text PDF

Aims: The role of long non-coding RNA's (lncRNA) in the biology of ulcerative colitis (UC) is not well understood. We have previously detected changes in lncRNA's associated with UC. This study aims to characterize one specific lncRNA, CDKN2B-AS1 whose expression was downregulated in UC patients.

View Article and Find Full Text PDF

Long noncoding RNA (lncRNA) biology is a new and exciting field of research, with the number of publications from this field growing exponentially since 2007. These studies have confirmed that lncRNAs are altered in almost all diseases. However, studying the functional roles for lncRNAs in the context of disease remains difficult due to the lack of protein products, tissue-specific expression, low expression levels, complexities in splice forms, and lack of conservation among species.

View Article and Find Full Text PDF

Inflammatory bowel disease (IBD) is a complex disorder that is associated with significant morbidity. While many recent advances have been made with new diagnostic and therapeutic tools, a deeper understanding of its basic pathophysiology is needed to continue this trend toward improving treatments. By utilizing an unbiased, high-throughput transcriptomic analysis of two well-established mouse models of colitis, we set out to uncover novel coding and noncoding RNAs that are differentially expressed in the setting of colonic inflammation.

View Article and Find Full Text PDF

Expression of the tight junction protein junctional adhesion molecule-A (JAM-A) has been linked to proliferation and tumour progression. However, a direct role for JAM-A in regulating proliferative processes has not been shown. By using complementary in vivo and in vitro approaches, we demonstrate that JAM-A restricts intestinal epithelial cell (IEC) proliferation in a dimerization-dependent manner, by inhibiting Akt-dependent β-catenin activation.

View Article and Find Full Text PDF