Publications by authors named "Carl P Goodrich"

The self-assembly of complex structures from a set of non-identical building blocks is a hallmark of soft matter and biological systems, including protein complexes, colloidal clusters, and DNA-based assemblies. Predicting the dependence of the equilibrium assembly yield on the concentrations and interaction energies of building blocks is highly challenging, owing to the difficulty of computing the entropic contributions to the free energy of the many structures that compete with the ground state configuration. While these calculations yield well known results for spherically symmetric building blocks, they do not hold when the building blocks have internal rotational degrees of freedom.

View Article and Find Full Text PDF

The inverse problem of designing component interactions to target emergent structure is fundamental to numerous applications in biotechnology, materials science, and statistical physics. Equally important is the inverse problem of designing emergent kinetics, but this has received considerably less attention. Using recent advances in automatic differentiation, we show how kinetic pathways can be precisely designed by directly differentiating through statistical physics models, namely free energy calculations and molecular dynamics simulations.

View Article and Find Full Text PDF

Recent advances in synthetic posttranslational protein circuits are substantially impacting the landscape of cellular engineering and offer several advantages compared to traditional gene circuits. However, engineering dynamic phenomena such as oscillations in protein-level circuits remains an outstanding challenge. Few examples of biological posttranslational oscillators are known, necessitating theoretical progress to determine realizable oscillators.

View Article and Find Full Text PDF

Creating a selective gel that filters particles based on their interactions is a major goal of nanotechnology, with far-reaching implications from drug delivery to controlling assembly pathways. However, this is particularly difficult when the particles are larger than the gel's characteristic mesh size because such particles cannot passively pass through the gel. Thus, filtering requires the interacting particles to transiently reorganize the gel's internal structure.

View Article and Find Full Text PDF

Recent advances in designing metamaterials have demonstrated that global mechanical properties of disordered spring networks can be tuned by selectively modifying only a small subset of bonds. Here, using a computationally efficient approach, we extend this idea to tune more general properties of networks. With nearly complete success, we are able to produce a strain between any two target nodes in a network in response to an applied source strain on any other pair of nodes by removing only ∼1% of the bonds.

View Article and Find Full Text PDF

Lerner's theoretical analysis neglects a normalizing factor which distinguishes states of self stress from the stress response to a unit dipolar force along a bond. This factor leads to different spatial profiles upon ensemble averaging.

View Article and Find Full Text PDF

Controlling motion at the microscopic scale is a fundamental goal in the development of biologically inspired systems. We show that the motion of active, self-propelled colloids can be sufficiently controlled for use as a tool to assemble complex structures such as braids and weaves out of microscopic filaments. Unlike typical self-assembly paradigms, these structures are held together by geometric constraints rather than adhesive bonds.

View Article and Find Full Text PDF

We propose a Widom-like scaling ansatz for the critical jamming transition. Our ansatz for the elastic energy shows that the scaling of the energy, compressive strain, shear strain, system size, pressure, shear stress, bulk modulus, and shear modulus are all related to each other via scaling relations, with only three independent scaling exponents. We extract the values of these exponents from already known numerical or theoretical results, and we numerically verify the resulting predictions of the scaling theory for the energy and residual shear stress.

View Article and Find Full Text PDF

We study the effect of dilute pinning on the jamming transition. Pinning reduces the average contact number needed to jam unpinned particles and shifts the jamming threshold to lower densities, leading to a pinning susceptibility, χ_{p}. Our main results are that this susceptibility obeys scaling form and diverges in the thermodynamic limit as χ_{p}∝|ϕ-ϕ_{c}^{∞}|^{-γ_{p}} where ϕ_{c}^{∞} is the jamming threshold in the absence of pins.

View Article and Find Full Text PDF

States of self stress, organizations of internal forces in many-body systems that are in equilibrium with an absence of external forces, can be thought of as the constitutive building blocks of the elastic response of a material. In overconstrained disordered packings they have a natural mathematical correspondence with the zero-energy vibrational modes in underconstrained systems. While substantial attention in the literature has been paid to diverging length scales associated with zero- and finite-energy vibrational modes in jammed systems, less is known about the spatial structure of the states of self stress.

View Article and Find Full Text PDF

Characterizing structural inhomogeneity is an essential step in understanding the mechanical response of amorphous materials. We introduce a threshold-free measure based on the field of vectors pointing from the center of each particle to the centroid of the Voronoi cell in which the particle resides. These vectors tend to point in toward regions of high free volume and away from regions of low free volume, reminiscent of sinks and sources in a vector field.

View Article and Find Full Text PDF

We introduce a principle unique to disordered solids wherein the contribution of any bond to one global perturbation is uncorrelated with its contribution to another. Coupled with sufficient variability in the contributions of different bonds, this "independent bond-level response" paves the way for the design of real materials with unusual and exquisitely tuned properties. To illustrate this, we choose two global perturbations: compression and shear.

View Article and Find Full Text PDF

We present a model of soft active particles that leads to a rich array of collective behavior found also in dense biological swarms of bacteria and other unicellular organisms. Our model uses only local interactions, such as Vicsek-type nearest-neighbor alignment, short-range repulsion, and a local boundary term. Changing the relative strength of these interactions leads to migrating swarms, rotating swarms, and jammed swarms, as well as swarms that exhibit run-and-tumble motion, alternating between migration and either rotating or jammed states.

View Article and Find Full Text PDF

We study the vibrational properties near a free surface of disordered spring networks derived from jammed sphere packings. In bulk systems, without surfaces, it is well understood that such systems have a plateau in the density of vibrational modes extending down to a frequency scale ω*. This frequency is controlled by ΔZ = 〈Z〉 - 2d, the difference between the average coordination of the spheres and twice the spatial dimension, d, of the system, which vanishes at the jamming transition.

View Article and Find Full Text PDF

We investigate the vibrational modes of quasi-two-dimensional disordered colloidal packings of hard colloidal spheres with short-range attractions as a function of packing fraction. Certain properties of the vibrational density of states (vDOS) are shown to correlate with the density and structure of the samples (i.e.

View Article and Find Full Text PDF

Packings of frictionless athermal particles that interact only when they overlap experience a jamming transition as a function of packing density. Such packings provide the foundation for the theory of jamming. This theory rests on the observation that, despite the multitude of disordered configurations, the mechanical response to linear order depends only on the distance to the transition.

View Article and Find Full Text PDF

Athermal packings of soft repulsive spheres exhibit a sharp jamming transition in the thermodynamic limit. Upon further compression, various structural and mechanical properties display clean power-law behavior over many decades in pressure. As with any phase transition, the rounding of such behavior in finite systems close to the transition plays an important role in understanding the nature of the transition itself.

View Article and Find Full Text PDF

Particle tracking and displacement covariance matrix techniques are employed to investigate the phonon dispersion relations of two-dimensional colloidal glasses composed of soft, thermoresponsive microgel particles whose temperature-sensitive size permits in situ variation of particle packing fraction. Bulk, B, and shear, G, moduli of the colloidal glasses are extracted from the dispersion relations as a function of packing fraction, and variation of the ratio G/B with packing fraction is found to agree quantitatively with predictions for jammed packings of frictional soft particles. In addition, G and B individually agree with numerical predictions for frictional particles.

View Article and Find Full Text PDF

We present an analysis of finite-size effects in jammed packings of N soft, frictionless spheres at zero temperature. There is a 1/N correction to the discrete jump in the contact number at the transition so that jammed packings exist only above isostaticity. As a result, the canonical power-law scalings of the contact number and elastic moduli break down at low pressure.

View Article and Find Full Text PDF

We used single-channel electrical recordings and Langevin molecular dynamics simulations to explore the electrophoretic translocation of various beta-hairpin peptides across the staphylococcal alpha-hemolysin (alphaHL) protein pore at single-molecule resolution. The beta-hairpin peptides, which varied in their folding properties, corresponded to the C terminal residues of the B1 domain of protein G. The translocation time was strongly dependent on the electric force and was correlated with the folding features of the beta-hairpin peptides.

View Article and Find Full Text PDF