The epigenetic factor Methyl-CpG-Binding Protein 2 (MeCP2) is a nuclear protein that binds methylated DNA molecules (both 5-methylcytosine and 5-hydroxymethylcytosine) and controls gene transcription. MeCP2 is an important transcription factor that acts in a dose-dependent manner in the brain; thus, its optimal expression level in brain cells is important. As such, its deregulated expression, as well as gain- or loss-of-function mutation, lead to impaired neurodevelopment, and compromised structure and function of brain cells, particularly in neurons.
View Article and Find Full Text PDFMethyl CpG binding protein-2 (MeCP2) isoforms (E1 and E2) are important epigenetic regulators in brain cells. Accordingly, MeCP2 loss- or gain-of-function mutation causes neurodevelopmental disorders, including Rett syndrome (RTT), duplication syndrome (MDS), and autism spectrum disorders (ASD). Within different types of brain cells, highest MeCP2 levels are detected in neurons and the lowest in astrocytes.
View Article and Find Full Text PDFWe have previously reported the deregulatory impact of ethanol on global DNA methylation of brain-derived neural stem cells (NSC). Here, we conducted a genome-wide RNA-seq analysis in differentiating NSC exposed to different modes of ethanol exposure. RNA-seq results showed distinct gene expression patterns and canonical pathways induced by ethanol exposure and withdrawal.
View Article and Find Full Text PDFRett syndrome (RTT) is a severe and rare neurological disorder that is caused by mutations in the X-linked (methyl CpG-binding protein 2) gene. MeCP2 protein is an important epigenetic factor in the brain and in neurons. In -deficient neurons, nucleoli structures are compromised.
View Article and Find Full Text PDFAdolescence is a pivotal period of brain development during lifespan, which is sensitive to stress exposure. Early social isolation stress (SIS) is known to provoke a variety of psychiatric comorbidities as well as seizure risk. Psychiatric comorbidities present challenging dilemmas for treatment and management in people with seizure disorders.
View Article and Find Full Text PDFTropisetron, a 5-HT3 receptor antagonist widely used as an antiemetic, has been reported to have positive effects on mood disorders. Adolescence is a critical period during the development of brain, where exposure to chronic stress during this time is highly associated with the development of depression. In this study, we showed that 4 weeks of juvenile social isolation stress (SIS) provoked depressive-like behaviors in male mice, which was associated with disruption of mitochondrial function and nitric oxide overproduction in the cortical areas.
View Article and Find Full Text PDFMeCP2 is a critical epigenetic regulator in brain and its abnormal expression or compromised function leads to a spectrum of neurological disorders including Rett Syndrome and autism. Altered expression of the two MeCP2 isoforms, MeCP2E1 and MeCP2E2 has been implicated in neurological complications. However, expression, regulation and functions of the two isoforms are largely uncharacterized.
View Article and Find Full Text PDFMutations in MECP2 cause the neurodevelopmental disorder Rett syndrome (RTT OMIM 312750). Alternative inclusion of MECP2/Mecp2 exon 1 with exons 3 and 4 encodes MeCP2-e1 or MeCP2-e2 protein isoforms with unique amino termini. While most MECP2 mutations are located in exons 3 and 4 thus affecting both isoforms, MECP2 exon 1 mutations but not exon 2 mutations have been identified in RTT patients, suggesting that MeCP2-e1 deficiency is sufficient to cause RTT.
View Article and Find Full Text PDFCentral nervous system development is controlled by highly conserved homeoprotein transcription factors including HOX and TALE (Three Amino acid Loop Extension). TALE proteins are primarily known as HOX-cofactors and play key roles in cell proliferation, differentiation and organogenesis. MEIS1 is a TALE member with established expression in the developing central nervous system.
View Article and Find Full Text PDFRett Syndrome (RTT) is a severe neurological disorder in young females, and is caused by mutations in the X-linked MECP2 gene. MECP2/Mecp2 gene encodes for two protein isoforms; MeCP2E1 and MeCP2E2 that are identical except for the N-terminus region of the protein. In brain, MECP2E1 transcripts are 10X higher, and MeCP2E1 is suggested to be the relevant isoform for RTT.
View Article and Find Full Text PDFMammalian retinas contain abundant neuronal gap junctions, particularly in the inner plexiform layer (IPL), where the two principal neuronal connexin proteins are Cx36 and Cx45. Currently undetermined are coupling relationships between these connexins and whether both are expressed together or separately in a neuronal subtype-specific manner. Although Cx45-expressing neurons strongly couple with Cx36-expressing neurons, possibly via heterotypic gap junctions, Cx45 and Cx36 failed to form functional heterotypic channels in vitro.
View Article and Find Full Text PDFOdorant/receptor binding and initial olfactory information processing occurs in olfactory receptor neurons (ORNs) within the olfactory epithelium. Subsequent information coding involves high-frequency spike synchronization of paired mitral/tufted cell dendrites within olfactory bulb (OB) glomeruli via positive feedback between glutamate receptors and closely-associated gap junctions. With mRNA for connexins Cx36, Cx43 and Cx45 detected within ORN somata and Cx36 and Cx43 proteins reported in ORN somata and axons, abundant gap junctions were proposed to couple ORNs.
View Article and Find Full Text PDF