Publications by authors named "Carl Murie"

Background: Individualized treatment decisions for patients with multiple myeloma (MM) requires accurate risk stratification that takes into account patient-specific consequences of genetic abnormalities and tumor microenvironment on disease outcome and therapy responsiveness.

Methods: Previously, SYstems Genetic Network AnaLysis (SYGNAL) of multi-omics tumor profiles from 881 MM patients generated the mmSYGNAL network, which uncovered different causal and mechanistic drivers of genetic programs associated with disease progression across MM subtypes. Here, we have trained a machine learning (ML) algorithm on activities of mmSYGNAL programs within individual patient tumor samples to develop a risk classification scheme for MM that significantly outperformed cytogenetics, International Staging System, and multi-gene biomarker panels in predicting risk of PFS across four independent patient cohorts.

View Article and Find Full Text PDF

Grade IV glioma, formerly known as glioblastoma multiforme (GBM) is the most aggressive and lethal type of brain tumor, and its treatment remains challenging in part due to extensive interpatient heterogeneity in disease driving mechanisms and lack of prognostic and predictive biomarkers. Using mechanistic inference of node-edge relationship (MINER), we have analyzed multiomics profiles from 516 patients and constructed an atlas of causal and mechanistic drivers of interpatient heterogeneity in GBM (gbmMINER). The atlas has delineated how 30 driver mutations act in a combinatorial scheme to causally influence a network of regulators (306 transcription factors and 73 miRNAs) of 179 transcriptional "programs", influencing disease progression in patients across 23 disease states.

View Article and Find Full Text PDF

mRNA translation plays an evolutionarily conserved role in homeostasis and when dysregulated contributes to various disorders including metabolic and neurological diseases and cancer. Notwithstanding that optimal and universally applicable methods are critical for understanding the complex role of translational control under physiological and pathological conditions, approaches to analyze translatomes are largely underdeveloped. To address this, we developed the anota2seq algorithm which outperforms current methods for statistical identification of changes in translation.

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease is an independent risk factor for lung cancer, but the underlying molecular mechanisms are unknown. We hypothesized that lung stromal cells activate pathological gene expression programs that support oncogenesis. To identify molecular mechanisms operating in the lung stroma that support the development of lung cancer.

View Article and Find Full Text PDF

Malaria continues to be one of mankind's most devastating diseases despite the many and varied efforts to combat it. Indispensable for malaria elimination and eventual eradication is the development of effective vaccines. Controlled human malaria infection (CHMI) is an invaluable tool for vaccine efficacy assessment and investigation of early immunological and molecular responses against Plasmodium falciparum infection.

View Article and Find Full Text PDF
Article Synopsis
  • iTRAQ and TMT are popular mass spectrometry techniques used for analyzing protein quantities in biological research, but they can introduce biases due to multiple runs.
  • Traditional reference sample normalization doesn't fully eliminate these biases, which can skew results in analyses.
  • The new NOMAD R package offers a more efficient ANOVA-based normalization method that effectively reduces bias and scales better for larger datasets, improving the accuracy of comparisons across different MS runs.
View Article and Find Full Text PDF

DNA microarrays and RNAseq are complementary methods for studying RNA molecules. Current computational methods to determine alternative exon usage (AEU) using such data require impractical visual inspection and still yield high false-positive rates. Integrated Gene and Exon Model of Splicing (iGEMS) adapts a gene-level residuals model with a gene size adjusted false discovery rate and exon-level analysis to circumvent these limitations.

View Article and Find Full Text PDF

The success of high-throughput screening (HTS) strategies depends on the effectiveness of both normalization methods and study design. We report comparisons among normalization methods in two titration series experiments. We also extend the results in a third experiment with two differently designed but otherwise identical screens: compounds in replicate plates were either placed in the same well locations or were randomly assigned to different locations.

View Article and Find Full Text PDF

Motivation: Advantages of statistical testing of high-throughput screens include P-values, which provide objective benchmarks of compound activity, and false discovery rate estimation. The cost of replication required for statistical testing, however, may often be prohibitive. We introduce the single assay-wide variance experimental (SAVE) design whereby a small replicated subset of an entire screen is used to derive empirical Bayes random error estimates, which are applied to the remaining majority of unreplicated measurements.

View Article and Find Full Text PDF

Background: DNA microarrays provide data for genome wide patterns of expression between observation classes. Microarray studies often have small samples sizes, however, due to cost constraints or specimen availability. This can lead to poor random error estimates and inaccurate statistical tests of differential expression.

View Article and Find Full Text PDF

Unlabelled: Jain et al. introduced the Local Pooled Error (LPE) statistical test designed for use with small sample size microarray gene-expression data. Based on an asymptotic proof, the test multiplicatively adjusts the standard error for a test of differences between two classes of observations by pi/2 due to the use of medians rather than means as measures of central tendency.

View Article and Find Full Text PDF

Background: DNA microarrays are popular tools for measuring gene expression of biological samples. This ever increasing popularity is ensuring that a large number of microarray studies are conducted, many of which with data publicly available for mining by other investigators. Under most circumstances, validation of differential expression of genes is performed on a gene to gene basis.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionskkfm1lkv0f6qedt17fd04vlukd7vb8v): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once