Publications by authors named "Carl J Meunier"

Carbon-fiber microelectrodes are proven and powerful sensors for electroanalytical measurements in a variety of environments, including complex systems such as the brain. They are used to detect and quantify a range of biological molecules, including neuropeptides, which are of broad interest for understanding physiological function. The enkephalins (met- and leu-) are endogenous opioid peptides that are involved in both pain and motivated behavior.

View Article and Find Full Text PDF

Carbon-fiber microelectrodes are instrumental tools in neuroscience used for the electroanalysis of neurochemical dynamics and recordings of neural activity. However, performance is variable and dependent on fabrication strategies, the biological response to implantation, and the physical and chemical composition of the recording environment. This presents an analytical challenge, as electrode performance is difficult to quantitatively assess especially when electrodes are permanently implanted or cemented in place.

View Article and Find Full Text PDF

Background-subtracted fast-scan cyclic voltammetry (FSCV) provides a method for detecting molecular fluctuations with high spatiotemporal resolution in the brain of awake and behaving animals. The rapid scan rates generate large background currents that are subtracted to reveal changes in analyte concentration. Although these background currents are relatively stable, small changes do occur over time.

View Article and Find Full Text PDF

Hydrogen peroxide (HO) is a reactive oxygen species that serves as an important signaling molecule in normal brain function. At the same time, excessive HO concentrations contribute to myriad pathological consequences resulting from oxidative stress. Studies to elucidate the diverse roles that HO plays in complex biological environments have been hindered by the lack of robust methods for probing dynamic HO fluctuations in living systems with molecular specificity.

View Article and Find Full Text PDF

Background-subtracted fast-scan cyclic voltammetry (FSCV) has emerged as a powerful analytical technique for monitoring subsecond molecular fluctuations in live brain tissue. Despite increasing utilization of FSCV, efforts to improve the accuracy of quantification have been limited due to the complexity of the technique and the dynamic recording environment. It is clear that variable electrode performance renders calibration necessary for accurate quantification; however, the nature of in vivo measurements can make conventional postcalibration difficult, or even impossible.

View Article and Find Full Text PDF