Delay discounting (DD) is a phenomenon where individuals devalue a reward associated with a temporal delay, with the rate of devaluation being representative of impulsive-like behavior. Here we first sought to develop and validate a mouse DD task to study brain circuits involved in DD decision-making within short developmental time windows, given widespread evidence of developmental regulation of impulse control and risk-taking. We optimized a T-maze DD task for mice that enables training and DD trials within two weeks.
View Article and Find Full Text PDFSocial behavior emerges early in development, a time marked by the onset of neurodevelopmental disorders featuring social deficits, including autism spectrum disorder (ASD). Although social deficits are at the core of the clinical diagnosis of ASD, very little is known about their neural correlates at the time of clinical onset. The nucleus accumbens (NAc), a brain region extensively implicated in social behavior, undergoes synaptic, cellular and molecular alterations in early life, and is particularly affected in ASD mouse models.
View Article and Find Full Text PDFMemory formation is a protracted process that initially involves the hippocampus and becomes increasingly dependent on the cortex over time, but the mechanisms of this transfer are unclear. We recently showed that hippocampal depletion of the histone variant H2A.Z enhances both recent and remote memories, but the use of virally mediated depletion reduced H2A.
View Article and Find Full Text PDF