The nucleolus is the largest membraneless organelle and nuclear body in mammalian cells. It is primarily involved in the biogenesis of ribosomes, essential macromolecular machines responsible for synthesizing all proteins required by the cell. The assembly of ribosomes is evolutionarily conserved and accounts for the most energy-consuming cellular process needed for cell growth, proliferation, and homeostasis.
View Article and Find Full Text PDFThe RNA helicase Dhr1 from S. cerevisiae is an essential enzyme required for the assembly of the cytosolic small ribosomal subunit (SSU). A critical feature of the SSU is the central pseudoknot, an RNA fold that organizes the overall architecture of the subunit and connects all four domains of the 18S ribosomal RNA (rRNA).
View Article and Find Full Text PDFThe nucleolus is the largest membrane-less structure in the eukaryotic nucleus. It is involved in the biogenesis of ribosomes, essential macromolecular machines responsible for synthesizing all proteins required by the cell. The assembly of ribosomes is evolutionarily conserved and is the most energy-consuming cellular process needed for cell growth, proliferation, and homeostasis.
View Article and Find Full Text PDFIn eukaryotic ribosome biogenesis, U3 snoRNA base pairs with the pre-rRNA to promote its processing. However, U3 must be removed to allow folding of the central pseudoknot, a key feature of the small subunit. Previously, we showed that the DEAH/RHA RNA helicase Dhr1 dislodges U3 from the pre-rRNA.
View Article and Find Full Text PDFIn eukaryotes, the highly conserved U3 small nucleolar RNA (snoRNA) base-pairs to multiple sites in the pre-ribosomal RNA (pre-rRNA) to promote early cleavage and folding events. Binding of the U3 box A region to the pre-rRNA is mutually exclusive with folding of the central pseudoknot (CPK), a universally conserved rRNA structure of the small ribosomal subunit essential for protein synthesis. Here, we report that the DEAH-box helicase Dhr1 (Ecm16) is responsible for displacing U3.
View Article and Find Full Text PDFEukaryotic ribosome biogenesis requires rapid hybridization between the U3 snoRNA and the pre-rRNA to direct cleavages at the A0, A1, and A2 sites in pre-rRNA that liberate the small subunit precursor. The bases involved in hybridization of one of the three duplexes that U3 makes with pre-rRNA, designated the U3-18S duplex, are buried in conserved structures: box A/A' stem-loop in U3 snoRNA and helix 1 (H1) in the 18S region of the pre-rRNA. These conserved structures must be unfolded to permit the necessary hybridization.
View Article and Find Full Text PDFRestrictocin and related fungal endoribonucleases from the α-sarcin family site-specifically cleave the sarcin/ricin loop (SRL) on the ribosome to inhibit translation and ultimately trigger cell death. Previous studies showed that the SRL folds into a bulged-G motif and tetraloop, with restrictocin achieving a specificity of ∼1000-fold by recognizing both motifs only after the initial binding step. Here, we identify contacts within the protein-RNA interface and determine the extent to which each one contributes to enzyme specificity by examining the effect of protein mutations on the cleavage of the SRL substrate compared to a variety of other RNA substrates.
View Article and Find Full Text PDFShort duplexes between the U3 small nucleolar RNA and the precursor ribosomal RNA must form quickly and with high yield to satisfy the high demand for ribosome synthesis in rapidly growing eukaryotic cells. These interactions, designated the U3-ETS (external transcribed spacer) and U3-18S duplexes, are essential to initiate the processing of small subunit ribosomal RNA. Previously, we showed that duplexes corresponding to those in Saccharomyces cerevisiae are only observed in vitro after addition of one of two proteins: Imp3p or Imp4p.
View Article and Find Full Text PDFRestrictocin, a member of the alpha-sarcin family of site-specific endoribonucleases, uses electrostatic interactions to bind to the ribosome and to RNA oligonucleotides, including the minimal specific substrate, the sarcin/ricin loop (SRL) of 23S-28S rRNA. Restrictocin binds to the SRL by forming a ground-state E:S complex that is stabilized predominantly by Coulomb interactions and depends on neither the sequence nor structure of the RNA, suggesting a nonspecific complex. The 22 cationic residues of restrictocin are dispersed throughout this protein surface, complicating a priori identification of a Coulomb interacting surface.
View Article and Find Full Text PDFRestrictocin is a site-specific endoribonuclease that inactivates ribosomes by cleaving the sarcin/ricin loop (SRL) of 23S-28S rRNA. Here we present a kinetic and thermodynamic analysis of the SRL cleavage reaction based on monitoring the cleavage of RNA oligonucleotides (2-27-mers). Restrictocin binds to a 27-mer SRL model substrate (designated wild-type SRL) via electrostatic interactions to form a nonspecific ground state complex E:S.
View Article and Find Full Text PDFAlpha-sarcin and ricin represent two structurally and mechanistically distinct families of site-specific enzymes that block translation by irreversibly modifying the sarcin/ricin loop (SRL) of 23S-28S rRNA. alpha-Sarcin family enzymes are designated as ribotoxins and act as endonucleases. Ricin family enzymes are designated as ribosome inactivating proteins (RIP) and act as N-glycosidases.
View Article and Find Full Text PDFAlpha-sarcin ribotoxins comprise a unique family of ribonucleases that cripple the ribosome by catalyzing endoribonucleolytic cleavage of ribosomal RNA at a specific location in the sarcin/ricin loop (SRL). The SRL structure alone is cleaved site-specifically by the ribotoxin, but the ribosomal context enhances the reaction rate by several orders of magnitude. We show that, for the alpha-sarcin-like ribotoxin restrictocin, this catalytic advantage arises from favorable electrostatic interactions with the ribosome.
View Article and Find Full Text PDFIn eukaryotes, formation of short duplexes between the U3 small nucleolar RNA (snoRNA) and the precursor rRNA (pre-rRNA) at multiple sites is a prerequisite for three endonucleolytic cleavages that initiate small subunit biogenesis by releasing the 18S rRNA precursor from the pre-rRNA. The most likely role of these RNA duplexes is to guide the U3 snoRNA and its associated proteins, designated the small subunit processome, to the target cleavage sites on the pre-rRNA. Studies by others in Saccharomyces cerevisiae have identified the proteins Mpp10p, Imp3p, and Imp4p as candidates to mediate U3-pre-rRNA interactions.
View Article and Find Full Text PDFDuring translocation peptidyl-tRNA moves from the A-site to the P-site and mRNA is displaced by three nucleotides in the 3' direction. This reaction is catalyzed by elongation factor-G (EF-G) and is associated with ribosome-dependent hydrolysis of GTP. The molecular basis of translocation is the most important unsolved problem with respect to ribosome function.
View Article and Find Full Text PDFBulged-G motifs are ubiquitous internal RNA loops that provide specific recognition sites for proteins and RNAs. To establish the common and distinctive features of the motif we determined the structures of three variants and compared them with related structures. The variants are 27-nt mimics of the sarcin/ricin loop (SRL) from Escherichia coli 23S ribosomal RNA that is an essential part of the binding site for elongation factors (EFs).
View Article and Find Full Text PDFGNRA tetraloops (N is A, C, G, or U; R is A or G) are basic building blocks of RNA structure that often interact with proteins or other RNA structural elements. Understanding sequence-dependent structural variation among different GNRA tetraloops is an important step toward elucidating the molecular basis of specific GNRA tetraloop recognition by proteins and RNAs. Details of the geometry and hydration of this motif have been based on high-resolution crystallographic structures of the GRRA subset of tetraloops; less is known about the GYRA subset (Y is C or U).
View Article and Find Full Text PDF