Classic biological control of pest non-marine molluscs has a long history of disastrous outcomes, and despite claims to the contrary, few advances have been made to ensure that contemporary biocontrol efforts targeting molluscs are safe and effective. For more than half a century, malacologists have warned of the dangers in applying practices developed in the field of insect biological control, where biocontrol agents are often highly host-specific, to the use of generalist predators and parasites against non-marine mollusc pests. Unfortunately, many of the lessons that should have been learned from these failed biocontrol programs have not been rigorously applied to contemporary efforts.
View Article and Find Full Text PDFThe reduced pressure in an aircraft cabin may cause significant hypoxaemia and respiratory symptoms in patients with chronic obstructive pulmonary disease (COPD). The current study evaluated whether there is a relationship between hypoxaemia obtained during hypoxia-altitude simulation testing (HAST), simulating an altitude of 2438 m, and the reporting of respiratory symptoms during air travel. 82 patients with moderate to very severe COPD answered an air travel questionnaire.
View Article and Find Full Text PDFBackground: The reduced pressure in the aircraft cabin may cause significant hypoxaemia and respiratory distress in patients with chronic obstructive pulmonary disease (COPD). Simple and reliable methods for predicting the need for supplemental oxygen during air travel have been requested.
Objective: To construct a pre-flight evaluation algorithm for patients with COPD.
Aviat Space Environ Med
April 2012
Introduction: Most helicopter operations are carried out at altitudes below 10,000 ft. At these altitudes, the risk of the crew experiencing hypoxia is low. For that reason, supplementary oxygen is not standard equipment on board most helicopters.
View Article and Find Full Text PDFBackground: Patients with COPD may need supplemental oxygen during air travel to avoid development of severe hypoxemia. The current study evaluated whether the hypoxia-altitude simulation test (HAST), in which patients breathe 15.1% oxygen simulating aircraft conditions, can be used to establish the optimal dose of supplemental oxygen.
View Article and Find Full Text PDFIntroduction: In a British Thoracic Society (BTS) statement on preflight evaluation of patients with respiratory disease, sea level pulse oximetry (Spo2sl) is recommended as an initial assessment. The present study aimed to evaluate if the BTS algorithm can be used to identify chronic obstructive pulmonary disease (COPD) patients in need of supplemental oxygen during air travel, i.e.
View Article and Find Full Text PDF