Background –: There is an urgent need to better understand the pathophysiology of primary graft dysfunction (PGD) so that point-of-care methods can be developed to predict those at risk. Here we utilize a multiplex multivariable approach to define cytokine, chemokines, and growth factors in patient-matched biospecimens from multiple biological sites to identify factors predictive of PGD.
Methods –: Biospecimens were collected from patients undergoing bilateral LTx from three distinct sites: donor lung perfusate, post-transplant bronchoalveolar lavage (BAL) fluid (2h), and plasma (2h and 24h).
Lung transplantation (LTx) outcomes are impeded by ischemia/reperfusion injury (IRI) and subsequent chronic lung allograft dysfunction (CLAD). We examined the undefined role of receptor Mer tyrosine kinase (MerTK) on monocytic myeloid-derived suppressor cells (M-MDSCs) in efferocytosis to facilitate resolution of lung IRI. Single-cell RNA sequencing of lung tissue and bronchoalveolar lavage (BAL) from patients after LTx were analyzed.
View Article and Find Full Text PDFBackground: Post-lung transplantation (LTx) injury can involve sterile inflammation due to ischemia-reperfusion injury (IRI). We investigated the cell-specific role of ferroptosis (excessive iron-mediated cell death) in mediating lung IRI and determined if specialized pro-resolving mediators such as Lipoxin A4 (LxA ) can protect against ferroptosis in lung IRI.
Methods: Single-cell RNA sequencing of lung tissue from post-LTx patients was analyzed.
Fibroblasts are stromal cells ubiquitously distributed in the body of nearly every organ tissue. These cells were previously considered to be "passive cells", solely responsible for ensuring the turnover of the extracellular matrix (ECM). However, their versatility, including their ability to switch phenotypes in response to tissue injury and dynamic activity in the maintenance of tissue specific homeostasis and integrity have been recently revealed by the innovation of technological tools such as genetically modified mouse models and single cell analysis.
View Article and Find Full Text PDFRationale: Patients with end stage lung diseases require lung transplantation (LTx) that can be impeded by ischemia-reperfusion injury (IRI) leading to subsequent chronic lung allograft dysfunction (CLAD) and inadequate outcomes.
Objectives: We examined the undefined role of MerTK (receptor Mer tyrosine kinase) on monocytic myeloid-derived suppressor cells (M-MDSCs) in efferocytosis (phagocytosis of apoptotic cells) to facilitate resolution of lung IRI.
Methods: Single-cell RNA sequencing of lung tissue and BAL from post-LTx patients was analyzed.
Sensorineural hearing loss is associated with dysfunction of cochlear cells. Although immune cells play a critical role in maintaining the inner ear microenvironment, the precise immune-related molecular mechanisms underlying the pathophysiology of hearing loss remain unclear. The complement cascade contributes to the regulation of immune cell activity.
View Article and Find Full Text PDFCancer treatment options are limited due to therapeutic resistance; thus, understanding the tumor microenvironment (TME) is crucial. Sphingolipid metabolism and complement activation products have essential roles in promoting tumor survival. Emerging evidence shows that sphingolipid signaling can regulate intracellular complement activation to induce inflammasome-mediated metastasis, offering a promising strategy for cancer therapy.
View Article and Find Full Text PDFMultiple neuroprotective agents have shown beneficial effects in rodent models of stroke, but they have failed to translate in the clinic. In this perspective, we consider that a likely explanation for this failure, at least in part, is that there has been inadequate assessment of functional outcomes in preclinical stroke models, as well the use of young healthy animals that are not representative of clinical cohorts. Although the impact of older age and cigarette smoking comorbidities on stroke outcomes is well documented clinically, the impact of these (and other) stroke comorbidities on the neuroinflammatory response after stroke, as well as the response to neuroprotective agents, remains largely unexplored.
View Article and Find Full Text PDFBackground: Lung transplantation (LTx) remains controversial in patients with absent peristalsis (AP) given the increased risk for gastroesophageal reflux (GER), and chronic lung allograft dysfunction. Furthermore, specific treatments to facilitate LTx in those with AP have not been widely described. Transcutaneous Electrical Stimulation (TES) has been reported to improve foregut contractility in LTx patients and therefore we hypothesize that TES may augment the esophageal motility of patients with ineffective esophageal motility (IEM).
View Article and Find Full Text PDFHighly sensitized patients, who are often black and Hispanic women, are less likely to be listed for lung transplant and are at higher risk for prolonged waitlist time and waitlist death. In this review, the authors discuss strategies for improving access to transplant in this population, including risk stratification of crossing pretransplant donor-specific antibodies, based on antibody characteristics. The authors also review institutional protocols, such as perioperative desensitization, for tailoring transplant immunosuppression in the highly sensitized population.
View Article and Find Full Text PDFBrain death (BD) donors are the primary source of donor organs for liver transplantation. However, the effects of BD on donor livers and outcomes after liver transplantation remain unclear. Here, we explored the role of complement and the therapeutic effect of complement inhibition in BD-induced liver injury and posttransplantation injury in a mouse BD and liver transplantation model.
View Article and Find Full Text PDFBackground: Dysregulation of inflammation-resolution pathways leads to postlung transplant (LTx) ischemia-reperfusion (IR) injury and allograft dysfunction. Our hypothesis is that combined treatment with specialized pro-resolving lipid mediators, that is, Resolvin D1 (RvD1) and Maresin-1 (MaR1), enhances inflammation-resolution of lung IR injury.
Methods: Expression of RvD1 and MaR1 was analyzed in bronchoalveolar lavage (BAL) fluid of patients on days 0, 1, and 7 post-LTx.
Ferroptosis is a druggable, iron-dependent form of cell death that is characterized by lipid peroxidation but has received little attention in lupus nephritis. Kidneys of lupus nephritis patients and mice showed increased lipid peroxidation mainly in the tubular segments and an increase in Acyl-CoA synthetase long-chain family member 4, a pro-ferroptosis enzyme. Nephritic mice had an attenuated expression of SLC7A11, a cystine importer, an impaired glutathione synthesis pathway, and low expression of glutathione peroxidase 4, a ferroptosis inhibitor.
View Article and Find Full Text PDFBacterial urinary tract infections (UTIs) have historically been reported to be uncommon in cats; however, recent studies showed a higher prevalence. Bacterial UTIs are one of the most common reasons for the use of antimicrobial drugs in veterinary medicine. Our aim was to investigate the prevalence of positive cultures in urine samples submitted to a UK laboratory for testing, as well as prevalence of bacterial species and their antimicrobial susceptibility to commonly used antibiotics.
View Article and Find Full Text PDFCrosstalk between metabolic and signaling events that induce tumor metastasis remains elusive. Here, we determine how oncogenic sphingosine 1-phosphate (S1P) metabolism induces intracellular C3 complement activation to enhance migration/metastasis. We demonstrate that increased S1P metabolism activates C3 complement processing through S1P receptor 1 (S1PR1).
View Article and Find Full Text PDFIron is essential to the virulence of Aspergillus species, and restricting iron availability is a critical mechanism of antimicrobial host defense. Macrophages recruited to the site of infection are at the crux of this process, employing multiple intersecting mechanisms to orchestrate iron sequestration from pathogens. To gain an integrated understanding of how this is achieved in aspergillosis, we generated a transcriptomic time series of the response of human monocyte-derived macrophages to Aspergillus and used this and the available literature to construct a mechanistic computational model of iron handling of macrophages during this infection.
View Article and Find Full Text PDFIn patients with chronic rhinosinusitis with nasal polyps, primary human sinonasal epithelial cell (HSNEC) 1α-hydroxylase levels are reduced, as is their ability to metabolize 25-hydroxycholecalciferol [25(OH)D] to its active metabolite, 1α,25-dihydroxyvitamin D [1,25(OH)D]. In this study, we sought to identify the factor responsible for the regulation of HSNEC metabolism of 25(OH)D, focusing on C3 and C3a. Multiple inhaled irritants trigger the release of complement components, C3 and C3a, leading to suppression of 1α-hydroxylase levels in HSNECs.
View Article and Find Full Text PDFBackground: Depriving microbes of iron is critical to host defense. Hemeproteins, the largest source of iron within vertebrates, are abundant in infected tissues in aspergillosis due to hemorrhage, but Aspergillus species have been thought to lack heme import mechanisms. We hypothesized that heme provides iron to Aspergillus during invasive pneumonia, thereby worsening the outcomes of the infection.
View Article and Find Full Text PDFPatients undergoing organ transplantation transition from one life-altering issue (organ dysfunction) to a lifelong commitment-immunosuppression. Regimens of immunosuppressive agents (ISAs) come with significant side effects and comorbidities. Recently, the use of nanoparticles (NPs) as a solution to the problems associated with the long-term and systemic use of ISAs in transplantation has emerged.
View Article and Find Full Text PDFThe complement system has long been recognized as a potential druggable target for a variety of inflammatory conditions. Very few complement inhibitors have been approved for clinical use, but a great number are in clinical development, nearly all of which systemically inhibit complement. There are benefits of targeting complement inhibition to sites of activation/disease in terms of efficacy and safety, and here we describe P-selectin targeted complement inhibitors, with and without a dual function of directly blocking P-selectin-mediated cell-adhesion.
View Article and Find Full Text PDFChronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide. The pathogenesis of COPD is complex; however, recent studies suggest autoimmune changes, characterized by the presence of autoantibodies to elastin and collagen, may contribute to disease status. COPD patients make up approximately 30% of all lung transplants (LTx) annually, however, little is known regarding the relationship between COPD-related autoantibodies and LTx outcomes.
View Article and Find Full Text PDFThe American Transplant Congress 2021 was a virtual meeting and occurred between June 4 and June 9 through an online platform. We highlighted abstracts discussing machine perfusion preservation, a hot topic that may become the gold standard of organ preservation in the future. A total of 33 abstracts on organ machine preservation (3 for heart, 4 for lungs, 18 for liver, and 8 for kidneys) were presented at the meeting.
View Article and Find Full Text PDFEarly insults associated with cardiac transplantation increase the immunogenicity of donor microvascular endothelial cells (ECs), which interact with recipient alloreactive memory T cells and promote responses leading to allograft rejection. Thus, modulating EC immunogenicity could potentially alter T cell responses. Recent studies have shown modulating mitochondrial fusion/fission alters immune cell phenotype.
View Article and Find Full Text PDFLung transplant patients have the lowest long-term survival rates compared to other solid organ transplants. The complications after lung transplantation such as primary graft dysfunction (PGD) and ultimately chronic lung allograft dysfunction (CLAD) are the main reasons for this limited survival. In recent years, lung-specific autoantibodies that recognize non-HLA antigens have been hypothesized to contribute to graft injury and have been correlated with PGD, CLAD, and survival.
View Article and Find Full Text PDF