Publications by authors named "Carl A Stratton"

Drosophila Polycomb (PC), a subunit of Polycomb repressive complex 1 (PRC1), is well known for its role in maintaining repression of the homeotic genes and many others and for its binding to trimethylated histone H3 on Lys 27 (H3K27me3) via its chromodomain. Here, we identify a novel activity of PC: inhibition of the histone acetylation activity of CREB-binding protein (CBP). We show that PC and its mammalian CBX orthologs interact directly with the histone acetyltransferase (HAT) domain of CBP, binding to the previously identified autoregulatory loop, whose autoacetylation greatly enhances HAT activity.

View Article and Find Full Text PDF

Trimethylation of histone H3 lysine 27 (H3K27me3) by Polycomb repressive complex 2 (PRC2) is essential for transcriptional silencing of Polycomb target genes, whereas acetylation of H3K27 (H3K27ac) has recently been shown to be associated with many active mammalian genes. The Trithorax protein (TRX), which associates with the histone acetyltransferase CBP, is required for maintenance of transcriptionally active states and antagonizes Polycomb silencing, although the mechanism underlying this antagonism is unknown. Here we show that H3K27 is specifically acetylated by Drosophila CBP and its deacetylation involves RPD3.

View Article and Find Full Text PDF

The Drosophila esc-like gene (escl) encodes a protein very similar to ESC. Like ESC, ESCL binds directly to the E(Z) histone methyltransferase via its WD region. In contrast to ESC, which is present at highest levels during embryogenesis and low levels thereafter, ESCL is continuously present throughout development and in adults.

View Article and Find Full Text PDF

Polycomb group proteins mediate heritable transcriptional silencing and function through multiprotein complexes that methylate and ubiquitinate histones. The 600-kDa E(Z)/ESC complex, also known as Polycomb repressive complex 2 (PRC2), specifically methylates histone H3 lysine 27 (H3 K27) through the intrinsic histone methyltransferase (HMTase) activity of the E(Z) SET domain. By itself, E(Z) exhibits no detectable HMTase activity and requires ESC for methylation of H3 K27.

View Article and Find Full Text PDF

Synthesis of new ribosomes is an energy costly and thus highly regulated process. Ribosomal protein synthesis is controlled by regulating translation of the corresponding ribosomal protein (rp)mRNAs. In mammalian cells a 5'-terminal oligopyrimidine tract (TOP) is a conserved feature of these mRNAs that has been demonstrated to be essential for their translational regulation.

View Article and Find Full Text PDF