Electrophoresis
February 2007
Perchlorate (ClO(4) (+)) and other chlorine oxide anions were observed to complex weakly with hexamethonium (1,6-bis-(trimethylammonium)-hexane) in both aqueous and polar nonaqueous solvents. The resultant positively charged complexes were resolved by NACE using 2-propanol/acetone electrolytes prior to mass spectrometric detection using an Agilent(3D)CE system coupled to a Bruker Esquire 3000+ quadrupole IT mass detector. Using electrokinetic injection, the method detection limit for perchlorate in nonaqueous media was 10 microg/L.
View Article and Find Full Text PDFAn Agilent 3DCE capillary electrophoresis system using sulfobutylether-beta-cyclodextrin (SB-beta-CD)-ammonium acetate separation buffer pH 6.9 was coupled to a Bruker Esquire 3000+ quadrupole ion trap mass detector via a commercially available electrospray ionization interface with acetonitrile sheath flow. The CE-MS system was applied in negative ionization mode for the resolution and detection of nitroaromatic and polar cyclic or caged nitramine energetic materials including TNT [2,4,6-trinitrotoluene, formula mass (FW) 227.
View Article and Find Full Text PDFA sulfobutyl ether-beta-cyclodextrin-assisted electrokinetic chromatographic method was developed to rapidly resolve and detect the cyclic nitramine explosives 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaaza-isowurtzitane (CL-20), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and their related degradation intermediates in environmental samples. Development of the electrophoretic method required the measurement of the aqueous solubility of CL-20 which was determined to be 3.59 +/- 0.
View Article and Find Full Text PDFTo investigate their potential for phytoremediation, selected agricultural and indigenous terrestrial plants were examined fortheir capacity to accumulate and degrade the explosive octahydro-1 ,3,5,7-tetra nitro-1,3,5,7-tetrazocine (HMX). Plant tissue and soil extracts were analyzed for the presence of HMX and possible degradative metabolites using high-performance liquid chromatography with diode-array UV detection (HPLC-UV), micellar electrokinetic chromatography with diode-array UV detection (MEKC-UV), and HPLC with electrospray ionization mass spectrometry (LC-MS). The pattern of HMX accumulation for alfalfa (Medicago sativa), bush bean (Phaseolus vulgaris), canola (Brassica rapa), wheat (Triticum aestivum), and perennial ryegrass (Loliumperenne) grown in a controlled environment on contaminated soil from an anti-tank firing range was similar to that observed for plants (wild bergamot (Monarda fistulosa), western wheat grass (Agropyron smithii), brome grass (Bromus sitchensis), koeleria (Koeleria gracilis), goldenrod (Solidago sp.
View Article and Find Full Text PDF