Introduction: The M50 electrophysiological auditory evoked response time can be measured at the superior temporal gyrus with magnetoencephalography (MEG) and its latency is related to the conduction velocity of auditory input passing from ear to auditory cortex. In children with autism spectrum disorder (ASD) and certain genetic disorders such as XYY syndrome, the auditory M50 latency has been observed to be elongated (slowed).
Methods: The goal of this study is to use neuroimaging (diffusion MR and GABA MRS) measures to predict auditory conduction velocity in typically developing (TD) children and children with autism ASD and XYY syndrome.
This multimodal imaging study used magnetoencephalography, diffusion magnetic resonance imaging (MRI), and gamma-aminobutyric acid (GABA) magnetic resonance spectroscopy (MRS) to identify and contrast the multiple physiological mechanisms associated with auditory processing efficiency in typically developing (TD) children and children with autism spectrum disorder (ASD). Efficient transmission of auditory input between the ear and auditory cortex is necessary for rapid encoding of auditory sensory information. It was hypothesized that the M50 auditory evoked response latency would be modulated by white matter microstructure (indexed by diffusion MRI) and by tonic inhibition (indexed by GABA MRS).
View Article and Find Full Text PDF