Heparosan synthase 1 (PmHS1) from Pasteurella multocida Type D is a dual action glycosyltransferase enzyme that transfers monosaccharide units from uridine diphospho (UDP) sugar precursors to form the polysaccharide heparosan (N-acetylheparosan), which is composed of alternating (-alpha4-GlcNAc-beta1,4-GlcUA-1-) repeats. We have used molecular genetic means to remove regions nonessential for catalytic activity from the amino- and the carboxyl-terminal regions as well as characterized the functional regions involved in GlcUA-transferase activity and in GlcNAc-transferase activity. Mutation of either one of the two regions containing aspartate-X-aspartate (DXD) residue-containing motifs resulted in complete or substantial loss of heparosan polymerizing activity.
View Article and Find Full Text PDFThe extracellular polysaccharide capsules of Pasteurella multocida types A, D, and F are composed of hyaluronan, N-acetylheparosan (heparosan or unsulfated, unepimerized heparin), and unsulfated chondroitin, respectively. Previously, a type D heparosan synthase, a glycosyltransferase that forms the repeating disaccharide heparosan backbone, was identified. Here, a approximately 73% identical gene product that is encoded outside of the capsule biosynthesis locus was also shown to be a functional heparosan synthase.
View Article and Find Full Text PDFPasteurella multocida Type D, a causative agent of atrophic rhinitis in swine and pasteurellosis in other domestic animals, produces an extracellular polysaccharide capsule that is a putative virulence factor. It was reported previously that the capsule was removed by treating microbes with heparin lyase III. We molecularly cloned a 617-residue enzyme, pmHS, which is a heparosan (nonsulfated, unepimerized heparin) synthase.
View Article and Find Full Text PDF