Publications by authors named "Carissa L Perez"

Acyl-CoA synthases are important for lipid synthesis and breakdown, generation of signaling molecules, and lipid modification of proteins, highlighting the challenge of understanding metabolic pathways within intact organisms. From a C. elegans mutagenesis screen, we found that loss of ACS-3, a long-chain acyl-CoA synthase, causes enhanced intestinal lipid uptake, de novo fat synthesis, and accumulation of enlarged, neutral lipid-rich intestinal depots.

View Article and Find Full Text PDF

Although studies in C. elegans have identified numerous genes involved in fat storage, the next step is to determine how these factors actually affect in vivo lipid metabolism. We have developed a (13)C isotope assay to quantify the contribution of dietary fat absorption and de novo synthesis to fat storage and membrane lipid production in C.

View Article and Find Full Text PDF

A major challenge in understanding energy balance is deciphering the neural and molecular circuits that govern behavioral, physiological, and metabolic responses of animals to fluctuating environmental conditions. The neurally expressed TGF-beta ligand DAF-7 functions as a gauge of environmental conditions to modulate energy balance in C. elegans.

View Article and Find Full Text PDF

Terminal differentiation is often coupled with permanent exit from the cell cycle, yet it is unclear how cell proliferation is blocked in differentiated tissues. We examined the process of cell cycle exit in Drosophila wings and eyes and discovered that cell cycle exit can be prevented or even reversed in terminally differentiating cells by the simultaneous activation of E2F1 and either Cyclin E/Cdk2 or Cyclin D/Cdk4. Enforcing both E2F and Cyclin/Cdk activities is required to bypass exit because feedback between E2F and Cyclin E/Cdk2 is inhibited after cells differentiate, ensuring that cell cycle exit is robust.

View Article and Find Full Text PDF