Publications by authors named "Carinne Puech"

Comprehensive pathogenesis studies on Peste des Petits Ruminants virus (PPRV) have been delayed so far by the absence of a small animal model reproducing the disease or an in vitro biological system revealing virulence differences. In this study, a mouse 10T1/2 cell line has been identified as presenting different susceptibility to virulent and attenuated PPRV strains. As evidenced by immunofluorescence test and RT-PCR, both virulent and attenuated PPR viruses penetrated and initiated the replication cycle in 10T1/2 cells, independently of the presence of the SLAM goat receptor.

View Article and Find Full Text PDF

Fluorescence expression tools for stable and innocuous whole mycoplasma cell labelling have been developed. A Tn4001-derivative mini-transposon affording unmarked, stable mutagenesis in mycoplasmas was modified to allow the constitutive, high-level expression of mCherry, mKO2 and mNeonGreen. These tools were used to introduce the respective fluorescent proteins as chromosomal tags in the phylogenetically distant species Mycoplasma mycoides subsp.

View Article and Find Full Text PDF

In this study we explored the immunomodulatory properties of highly purified free galactan, the soluble exopolysaccharide secreted by Mycoplasma mycoides subsp. mycoides (Mmm). Galactan was shown to bind to TLR2 but not TLR4 using HEK293 reporter cells and to induce the production of the anti-inflammatory cytokine IL-10 in bovine macrophages, whereas low IL-12p40 and no TNF-α, both pro-inflammatory cytokines, were induced in these cells.

View Article and Find Full Text PDF

Contagious bovine pleuropneumonia (CBPP), caused by Mycoplasma mycoides subsp. mycoides (Mmm), is a severe respiratory disease of cattle responsible for major economic losses in sub-Saharan Africa. Disease control relies mainly on the use of empirically attenuated vaccines that provide limited protection.

View Article and Find Full Text PDF

Tick-borne pathogens cause potent infections. These pathogens benefit from molecules contained in tick saliva that have evolved to modulate host innate and adaptive immune responses. This is called "saliva-activated transmission" and enables tick-borne pathogens to evade host immune responses.

View Article and Find Full Text PDF

Background: Today, when more than 60% of animal diseases are zoonotic, understanding their origin and development and identifying protective immune responses in ruminants are major challenges. Robust, efficient and cost-effective tools are preconditions to solve these challenges. Cytokines play a key role in the main mechanisms by which the immune system is balanced in response to infectious pathogens.

View Article and Find Full Text PDF