Publications by authors named "Carini G"

The vast repository of van der Waals (vdW) materials supporting polaritons offers numerous possibilities to tailor electromagnetic waves at the nanoscale. The development of twistoptics-the modulation of the optical properties by twisting stacks of vdW materials-enables directional propagation of phonon polaritons (PhPs) along a single spatial direction, known as canalization. Here we demonstrate a complementary type of directional propagation of polaritons by reporting the visualization of unidirectional ray polaritons (URPs).

View Article and Find Full Text PDF
Article Synopsis
  • The gene LRRK2, linked to both familial and sporadic Parkinson's disease, plays vital roles in the behavior of glial cells, particularly in oligodendrocyte precursor cells (OPCs) compared to other brain cells.
  • Research indicates that the absence of LRRK2 in OPC cultures leads to difficulties in their maturation into oligodendrocytes, highlighting its importance in this differentiation process.
  • Additional findings in LRRK2 knock-out mice and transgenic zebrafish show decreased levels of key proteins involved in myelination and nerve growth factor, further suggesting LRRK2's critical role in the development of mature oligodendrocytes.
View Article and Find Full Text PDF
Article Synopsis
  • Structural anisotropy in crystals affects how light travels, especially in the infrared region, where it interacts with phonon polaritons (PhPs), which are quasiparticles formed by light and lattice vibrations.
  • Recent research on the monoclinic crystal β-GaO (bGO) reveals that PhPs can exhibit highly asymmetric propagation, which researchers studied using advanced techniques like scanning near-field optical microscopy.
  • The study demonstrates that adjusting the laser orientation, the size of nano-antennas, and the frequency of light can significantly influence the behavior of these phonon polaritons, paving the way for practical applications in low-symmetry crystals.
View Article and Find Full Text PDF

Chronic neuroinflammation plays a crucial role in the progression of several neurodegenerative diseases (NDDs), including Parkinson's disease (PD) and Alzheimer's disease (AD). Intriguingly, in the last decade, leucine-rich repeat kinase-2 (), a gene mutated in familial and sporadic PD, was revealed as a key mediator of neuroinflammation. Therefore, the anti-inflammatory properties of LRRK2 inhibitors have started to be considered as a disease-modifying treatment for PD; however, to date, there is little evidence on the beneficial effects of targeting LRRK2-related neuroinflammation in preclinical models.

View Article and Find Full Text PDF

Frailty is a geriatric syndrome characterized by age-related decline in physiological reserves and functions in multiple organ systems, including the musculoskeletal, neuroendocrine/metabolic, and immune systems. Animal models are essential to study the biological basis of aging and potential ways to delay the onset of age-related phenotypes. Unfortunately, validated animal models of frailty are still lacking in preclinical research.

View Article and Find Full Text PDF

Traumatic stress is the main environmental risk factor for the development of psychiatric disorders. We have previously shown that acute footshock (FS) stress in male rats induces rapid and long-lasting functional and structural changes in the prefrontal cortex (PFC), which are partly reversed by acute subanesthetic ketamine. Here, we asked if acute FS may also induce any changes in glutamatergic synaptic plasticity in the PFC 24 h after stress exposure and whether ketamine administration 6 h after stress may have any effect.

View Article and Find Full Text PDF

Extreme anisotropy in some polaritonic materials enables light propagation with a hyperbolic dispersion, leading to enhanced light-matter interactions and directional transport. However, these features are typically associated with large momenta that make them sensitive to loss and poorly accessible from far-field, being bound to the material interface or volume-confined in thin films. Here, we demonstrate a new form of directional polaritons, leaky in nature and featuring lenticular dispersion contours that are neither elliptical nor hyperbolic.

View Article and Find Full Text PDF

Stress is a primary risk factor for psychiatric disorders such as Major Depressive Disorder (MDD) and Post Traumatic Stress Disorder (PTSD). The response to stress involves the regulation of transcriptional programs, which is supposed to play a role in coping with stress. To evaluate transcriptional processes implemented after exposure to unavoidable traumatic stress, we applied microarray expression analysis to the PFC of rats exposed to acute footshock (FS) stress that were sacrificed immediately after the 40 min session or 2 h or 24 h after.

View Article and Find Full Text PDF

Stress is a key risk factor in the onset of neuropsychiatric disorders. The study of the mechanisms underlying stress response is important to understand the etiopathogenetic mechanisms and identify new putative therapeutic targets. In this context, microRNAs (miRNAs) have emerged as key regulators of the complex patterns of gene/protein expression changes in the brain, where they have a crucial role in the regulation of neuroplasticity, neurogenesis, and neuronal differentiation.

View Article and Find Full Text PDF

DUNE is a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual Phase (DP) is a 6   6   6 m liquid argon time-projection-chamber (LArTPC) that recorded cosmic-muon data at the CERN Neutrino Platform in 2019-2020 as a prototype of the DUNE Far Detector. Charged particles propagating through the LArTPC produce ionization and scintillation light.

View Article and Find Full Text PDF

Stress represents a major risk factor for psychiatric disorders, including post-traumatic stress disorder (PTSD). Recently, we dissected the destabilizing effects of acute stress on the excitatory glutamate system in the prefrontal cortex (PFC). Here, we assessed the effects of single subanesthetic administration of ketamine (10 mg/kg) on glutamate transmission and dendritic arborization in the PFC of footshock (FS)-stressed rats, along with changes in depressive, anxious, and fear extinction behaviors.

View Article and Find Full Text PDF

Frailty is an aging-related pathology, defined as a state of increased vulnerability to stressors, leading to a limited capacity to meet homeostatic demands. Extracellular microRNAs (miRNAs) were proposed as potential biomarkers of various disease conditions, including age-related pathologies. The primary objective of this study was to identify blood miRNAs that could serve as potential biomarkers and candidate mechanisms of frailty.

View Article and Find Full Text PDF

The lattice symmetry of a crystal is one of the most important factors in determining its physical properties. Particularly, low-symmetry crystals offer powerful opportunities to control light propagation, polarization and phase. Materials featuring extreme optical anisotropy can support a hyperbolic response, enabling coupled light-matter interactions, also known as polaritons, with highly directional propagation and compression of light to deeply sub-wavelength scales.

View Article and Find Full Text PDF

Frailty is an aging related condition, which has been defined as a state of enhanced vulnerability to stressors, leading to a limited capacity to meet homeostatic demands. Cognitive impairment is also frequent in older people, often accompanying frailty. Age is the main independent risk factor for both frailty and cognitive impairment, and compelling evidence suggests that similar age-associated mechanisms could underlie both clinical conditions.

View Article and Find Full Text PDF

The Deep Underground Neutrino Experiment (DUNE) will be a powerful tool for a variety of physics topics. The high-intensity proton beams provide a large neutrino flux, sampled by a near detector system consisting of a combination of capable precision detectors, and by the massive far detector system located deep underground. This configuration sets up DUNE as a machine for discovery, as it enables opportunities not only to perform precision neutrino measurements that may uncover deviations from the present three-flavor mixing paradigm, but also to discover new particles and unveil new interactions and symmetries beyond those predicted in the Standard Model (SM).

View Article and Find Full Text PDF

Converging clinical and preclinical evidence demonstrates that depressive phenotypes are associated with synaptic dysfunction and dendritic simplification in cortico-limbic glutamatergic areas. On the other hand, the rapid antidepressant effect of acute ketamine is consistently reported to occur together with the rescue of dendritic atrophy and reduction of spine number induced by chronic stress in the hippocampus and prefrontal cortex of animal models of depression. Nevertheless, the molecular mechanisms underlying these morphological alterations remain largely unknown.

View Article and Find Full Text PDF

We report observations of nanosecond nonuniform colloidal dynamics in a free flowing liquid jet using ultrafast x-ray speckle visibility spectroscopy. Utilizing a nanosecond double-bunch mode, the Linac Coherent Light Source free electron laser produced pairs of femtosecond coherent hard x-ray pulses. By exploring anisotropy in the visibility of summed speckle patterns which relates to the correlation functions, we evaluate not only the average particle flow rate in a colloidal nanoparticle jet, but also the nonuniform flow field within.

View Article and Find Full Text PDF

Single Particle Imaging (SPI) with intense coherent X-ray pulses from X-ray free-electron lasers (XFELs) has the potential to produce molecular structures without the need for crystallization or freezing. Here we present a dataset of 285,944 diffraction patterns from aerosolized Coliphage PR772 virus particles injected into the femtosecond X-ray pulses of the Linac Coherent Light Source (LCLS). Additional exposures with background information are also deposited.

View Article and Find Full Text PDF

Converging clinical and preclinical evidence has shown that dysfunction of the glutamate system is a core feature of major depressive disorder. In this context, the N-methyl-d-aspartate (NMDA) receptor antagonist ketamine has raised growing interest as fast acting antidepressant. Using the chronic mild stress (CMS) rat model of depression, performed in male rats, we aimed at analyzing whether hippocampal specific changes in subunit expression and regulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) or NMDA ionotropic receptors and in metabotropic glutamate receptors could be associated with behavioral vulnerability/resilience to CMS.

View Article and Find Full Text PDF

In this paper, we summarize briefly some of the future trends in synchrotron science as seen at the National Synchrotron Light Source II, a new, low emittance source recently commissioned at Brookhaven National Laboratory. We touch upon imaging techniques, the study of dynamics, the increasing use of multimodal approaches, the vital importance of data science, and other enabling technologies. Each are presently undergoing a time of rapid change, driving the field of synchrotron science forward at an ever increasing pace.

View Article and Find Full Text PDF

Due to pulse pileup, photon counting detectors (PCDs) suffer from count loss and energy distortion when operating in high count rate environments. In this paper, we studied the pulse pileup of a double-sided silicon strip detector (DSSSD) to evaluate its potential application in a mammography system. We analyzed the pulse pileup using pulses of varied shapes, where the shape of the pulse depends on the location of photon interaction within the detector.

View Article and Find Full Text PDF

An X-ray emission spectrometer that can detect the sulfur Kα emission lines with large throughput and a high energy resolution is presented. The instrument is based on a large d-spacing perfect Bragg analyzer that diffracts the sulfur Kα emission at close to backscattering angles. This facilitates the application of efficient concepts routinely employed in hard X-ray spectrometers towards the tender X-ray regime.

View Article and Find Full Text PDF

The possibility of imaging single proteins constitutes an exciting challenge for x-ray lasers. Despite encouraging results on large particles, imaging small particles has proven to be difficult for two reasons: not quite high enough pulse intensity from currently available x-ray lasers and, as we demonstrate here, contamination of the aerosolized molecules by nonvolatile contaminants in the solution. The amount of contamination on the sample depends on the initial droplet size during aerosolization.

View Article and Find Full Text PDF

The Macromolecular Femtosecond Crystallography (MFX) instrument at the Linac Coherent Light Source (LCLS) is the seventh and newest instrument at the world's first hard X-ray free-electron laser. It was designed with a primary focus on structural biology, employing the ultrafast pulses of X-rays from LCLS at atmospheric conditions to overcome radiation damage limitations in biological measurements. It is also capable of performing various time-resolved measurements.

View Article and Find Full Text PDF

X-ray free-electron lasers provide intense pulses of coherent X-rays with a short pulse duration. These sources are chaotic by nature and therefore, to be used at their full potential, require that every X-ray pulse is characterized in terms of various relevant properties such as intensity, photon energy, position and timing. Diagnostics are for example installed on an X-ray beamline to specifically monitor the intensity of individual X-ray pulses.

View Article and Find Full Text PDF