Publications by authors named "Carine M Marshall"

Biological rhythms are ubiquitous. They can be generated by circadian oscillators, which produce daily rhythms in physiology and behavior, as well as by developmental oscillators such as the segmentation clock, which periodically produces modular developmental units. Here, we show that the circadian clock controls the timing of late-stage floret development, or anthesis, in domesticated sunflowers.

View Article and Find Full Text PDF

Objectives: The objective of this data set was to identify how interaction between temperature and the sickle-3 (sic-3) mutant alters the global messenger RNA (mRNA) content of Arabidopsis thaliana seedlings. The motivation was discovery of atypical mRNA splice variants in sic-3 that differed with seedling growth temperature. The expected outcome was identification of mRNA splice variants altered by sic-3, temperature, or the combination of temperature and genotype.

View Article and Find Full Text PDF

Light signals regulate plant growth and development by controlling a plethora of gene expression changes. Posttranscriptional regulation, especially pre-mRNA processing, is a key modulator of gene expression; however, the molecular mechanisms linking pre-mRNA processing and light signaling are not well understood. Here we report a protein related to the human splicing factor 45 (SPF45) named splicing factor for phytochrome signaling (SFPS), which directly interacts with the photoreceptor phytochrome B (phyB).

View Article and Find Full Text PDF

The circadian clock allows plants to anticipate and respond to daily changes in ambient temperature. Mechanisms establishing the timing of circadian rhythms in Arabidopsis thaliana through temperature entrainment remain unclear. Also incompletely understood is the temperature compensation mechanism that maintains consistent period length within a range of ambient temperatures.

View Article and Find Full Text PDF

Circadian clocks are endogenous timers that enable plants to synchronize biological processes with daily and seasonal environmental conditions in order to allocate resources during the most beneficial times of day and year. The circadian clock regulates a number of central plant activities, including growth, development, and reproduction, primarily through controlling a substantial proportion of transcriptional activity and protein function. This review examines the roles that alleles of circadian clock genes have played in domestication and improvement of crop plants.

View Article and Find Full Text PDF