An objective measure of brain maturation is highly insightful for monitoring both typical and atypical development. Slow wave activity, recorded in the sleep electroencephalogram (EEG), reliably indexes changes in brain plasticity with age, as well as deficits related to developmental disorders such as attention-deficit hyperactivity disorder (ADHD). Unfortunately, measuring sleep EEG is resource-intensive and burdensome for participants.
View Article and Find Full Text PDFThe question of how waste products are cleared from the brain, and the role which sleep plays in this process, is critical for our understanding of a range of physical and mental illnesses. In rodents, both circadian and sleep-related processes appear to facilitate clearance of waste products. The purpose of this study was to investigate whether overnight changes in diffusivity, brain volumes, and cerebrospinal fluid flow measured with MRI are associated with sleep parameters from overnight high-density sleep EEG, and circadian markers.
View Article and Find Full Text PDFRegional changes of non-rapid eye movement (NREM) sleep delta and sigma activity, and their temporal coupling have been related to experience-dependent plastic changes during previous wakefulness. These sleep-specific rhythms seem to be important for brain recovery and memory consolidation. Recently, it was demonstrated that by targeting slow waves in a particular region at a specific phase with closed-loop auditory stimulation, it is possible to locally manipulate slow-wave activity and interact with training-induced neuroplastic changes.
View Article and Find Full Text PDFStudy Objectives: The restorative function of sleep has been linked to a net reduction in synaptic strength. The slope of slow-waves, a major characteristic of non-rapid eye movement (NREM) sleep, has been shown to directly reflect synaptic strength, when accounting for amplitude changes across the night. In this study, we aimed to investigate overnight slope changes in the course of development in an age-, amplitude-, and region-dependent manner.
View Article and Find Full Text PDFSlow waves (1-4.5 Hz) are the most characteristic oscillations of deep non-rapid eye movement sleep. The EEG power in this frequency range (slow-wave activity, SWA) parallels changes in cortical connectivity (i.
View Article and Find Full Text PDFSleep slow waves during non-rapid eye movement (NREM) sleep play a crucial role in maintaining cortical plasticity, a process that is especially important in the developing brain. Children show a considerably larger overnight decrease in slow wave activity (SWA; the power in the EEG frequency band between 1 and 4.5 Hz during NREM sleep), which constitutes the primary electrophysiological marker for the restorative function of sleep.
View Article and Find Full Text PDFThe glutamatergic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor is involved in synaptic plasticity processes, and animal studies have demonstrated altered expression across the sleep wake cycle. Accordingly, glutamate levels are reduced during non-rapid eye movement (NREM) sleep and the rate of this decrease is positively correlated with sleep EEG slow wave activity (SWA). Here, we combined proton magnetic resonance spectroscopy ( H-MRS) and high-density sleep EEG to assess if H-MRS is sensitive to diurnal changes of glutamate + glutamine (GLX) in healthy young adults and if potential overnight changes of GLX are correlated to SWA.
View Article and Find Full Text PDFIt is hypothesized that deep sleep is essential for restoring the brain's capacity to learn efficiently, especially in regions heavily activated during the day. However, causal evidence in humans has been lacking due to the inability to sleep deprive one target area while keeping the natural sleep pattern intact. Here we introduce a novel approach to focally perturb deep sleep in motor cortex, and investigate the consequences on behavioural and neurophysiological markers of neuroplasticity arising from dedicated motor practice.
View Article and Find Full Text PDFSleep is undisputable an essential part of our life, if we do not sleep enough we feel the consequences the next day. The importance of sleep for healthy brain functioning has been well studied in adults, but less is known for the role of sleep in the paediatric age. Childhood and adolescence is a critical phase for brain development.
View Article and Find Full Text PDFIntroduction: The long preclinical phase of Alzheimer's disease provides opportunities for potential disease-modifying interventions in prodromal stages such as mild cognitive impairment (MCI). Anodal transcranial direct current stimulation (anodal-tDCS), with its potential to enhance neuroplasticity, may allow improving cognition in MCI.
Methods: In a double-blind, cross-over, sham-controlled study, anodal-tDCS was administered to the left inferior frontal cortex during task-related and resting-state functional magnetic resonance imaging (fMRI) to assess its impact on cognition and brain functions in MCI.