Drought-sensitive crops are threatened as a consequence of limited available water due to climate change. The cultivated potato (Solanum tuberosum) is susceptible to drought and within its wild relative species, Solanum kurtzianum is the Argentinian wild potato species best adapted to arid conditions. However, its physiological responses to water deficit (WD) are still missing.
View Article and Find Full Text PDFPlants have evolved an array of specific photoreceptors to acclimate to the light environment. By sensing light signals, photoreceptors modulate plant morphology, carbon- and water-physiology, crop yield and quality of harvestable organs, among other responses. Many cultural practices and crop management decisions alter light quantity and quality perceived by plants cultivated in the field.
View Article and Find Full Text PDFSunlight exposure has multiple effect on fruits, as it affects the light climate perceived by fruit photoreceptors and fruit tissue temperature. In grapes (Vitis vinifera L.), light exposure can have a strong effect on fruit quality and commercial value; however, the mechanisms of light action are not well understood.
View Article and Find Full Text PDFPhytochrome B (phyB) can adjust morphological and physiological responses according to changes in the red:far-red (R:FR) ratio. phyB-driven acclimation of plants to open environments (high R:FR ratio) increases carbon gain at the expense of increased water loss. This behaviour alleviates stressful conditions generated by an excess of light, but increases the chances of desiccation.
View Article and Find Full Text PDFStresses resulting from high transpiration demand induce adjustments in plants that lead to reductions of water loss. These adjustments, including changes in water absorption, transport and/or loss by transpiration, are crucial to normal plant development. Tomato wild type (WT) and phytochrome A (phyA)-mutant plants, fri1-1, were exposed to conditions of either low or high transpiration demand and several morphological and physiological changes were measured during stress conditions.
View Article and Find Full Text PDF