The cytoskeleton is essential for spatial and temporal organisation of a wide range of cellular and tissue-level processes, such as proliferation, signalling, cargo transport, migration, morphogenesis, and neuronal development. Cytoskeleton research aims to study these processes by imaging, or by locally manipulating, the dynamics and organisation of cytoskeletal proteins with high spatiotemporal resolution: which matches the capabilities of optical methods. To date, no photoresponsive microtubule-stabilising tool has united all the features needed for a practical high-precision reagent: a low potency and biochemically stable non-illuminated state; then an efficient, rapid, and clean photoresponse that generates a high potency illuminated state; plus good solubility at suitable working concentrations; and efficient synthetic access.
View Article and Find Full Text PDFWe report piperazine-fused six-membered-cyclic disulfides as redox substrates that unlock best-in-class bioreduction probes for live cell biology, since their self-immolation after reduction is unprecedentedly rapid. We develop scalable, diastereomerically pure, six-step syntheses that access four key - and -piperazine-fused cyclic dichalcogenides without chromatography. Fluorogenic redox probes using the disulfide piperazines are activated >100-fold faster than the prior art monoamines, allowing us to deconvolute reduction and cyclization rates during activation.
View Article and Find Full Text PDF