Publications by authors named "Carina GroSS"

Article Synopsis
  • - Colds lead to significant work incapacity in 2023, impacting the German economy, with Echinacea products being popular as immune boosters and gaining attention during the COVID-19 pandemic.
  • - A study examined 22 Echinacea herbal preparations, highlighting inconsistencies in their ingredients and formulations, despite their similar market presentation.
  • - To better match clinical research with real-world products, new studies should analyze the actual compositions of these preparations and consider factors like dosage and work incapacity as outcomes.
View Article and Find Full Text PDF

Hyperreactive platelets are commonly observed in diabetic patients indicating a potential link between glucose homeostasis and platelet reactivity. This raises the possibility that platelets may play a role in the regulation of metabolism. Pancreatic β cells are the central regulators of systemic glucose homeostasis.

View Article and Find Full Text PDF

G6b-B is a megakaryocyte lineage-specific immunoreceptor tyrosine-based inhibition motif-containing receptor, essential for platelet homeostasis. Mice with a genomic deletion of the entire Mpig6b locus develop severe macrothrombocytopenia and myelofibrosis, which is reflected in humans with null mutations in MPIG6B. The current model proposes that megakaryocytes lacking G6b-B develop normally, whereas proplatelet release is hampered, but the underlying molecular mechanism remains unclear.

View Article and Find Full Text PDF

Coordinated rearrangements of the actin cytoskeleton are pivotal for platelet biogenesis from megakaryocytes but also orchestrate key functions of peripheral platelets in hemostasis and thrombosis, such as granule release, the formation of filopodia and lamellipodia, or clot retraction. Along with profilin (Pfn) 1, thymosin β4 (encoded by Tmsb4x) is one of the two main G-actin-sequestering proteins within cells of higher eukaryotes, and its intracellular concentration is particularly high in cells that rapidly respond to external signals by increased motility, such as platelets. Here, we analyzed constitutive Tmsb4x knockout (KO) mice to investigate the functional role of the protein in platelet production and function.

View Article and Find Full Text PDF

Investigation of the bone marrow as the main compartment of hematopoiesis is critical in many research fields. Here, we adapted a centrifugation-based method for the isolation of murine bone marrow and compared it to the traditional flushing method. Analysis of primary hematopoietic stem cells, immune cells, and megakaryocytes revealed a comparable distribution of cellular (sub)populations.

View Article and Find Full Text PDF

Rearrangements of the microtubule (MT) and actin cytoskeleton are pivotal for platelet biogenesis. Hence, defects in actin- or MT-regulatory proteins are associated with platelet disorders in humans and mice. Previous studies in mice revealed that loss of the actin-depolymerizing factor homology (ADF-H) protein Cofilin1 (Cof1) in megakaryocytes (MKs) results in a moderate macrothrombocytopenia but normal MK numbers, whereas deficiency in another ADF-H protein, Twinfilin1 (Twf1), does not affect platelet production or function.

View Article and Find Full Text PDF

The transition from vegetative growth to multicellular development represents an evolutionary hallmark linked to an oxidative stress signal and controlled protein degradation. We identified the Sem1 proteasome subunit, which connects stress response and cellular differentiation. The sem1 gene encodes the fungal counterpart of the human Sem1 proteasome lid subunit and is essential for fungal cell differentiation and development.

View Article and Find Full Text PDF

Pneumonectomy (PNX) in experimental animals leads to a species- and age-dependent compensatory growth of the remaining lung lobes. PNX mimics the loss of functional gas exchange units observed in a number of chronic destructive lung diseases. However, unlike in disease models, this tissue loss is well defined, reproducible and lacks accompanying inflammation.

View Article and Find Full Text PDF

MicroRNAs comprise a broad class of small non-coding RNAs that control expression of complementary target messenger RNAs. Dysregulation of microRNAs by several mechanisms has been described in various disease states including cardiac disease. Whereas previous studies of cardiac disease have focused on microRNAs that are primarily expressed in cardiomyocytes, the role of microRNAs expressed in other cell types of the heart is unclear.

View Article and Find Full Text PDF

Background: Chronic heart failure is characterized by left ventricular remodeling and reactivation of a fetal gene program; the underlying mechanisms are only partly understood. Here we provide evidence that cardiac microRNAs, recently discovered key regulators of gene expression, contribute to the transcriptional changes observed in heart failure.

Methods And Results: Cardiac transcriptome analyses revealed striking similarities between fetal and failing human heart tissue.

View Article and Find Full Text PDF