Phloem is a critical tissue for transport of photosynthates and extracellular signals in vascular plants. However, it also represents an ideal environment for pathogens seeking access to valuable host nutrients. Although many vascular pathogens induce economically relevant crop damage, there is still little known about the mechanisms by which immune signaling operates through the phloem.
View Article and Find Full Text PDFThe plasma membrane (PM) provides a critical interface between plant cells and their environment to control cellular responses. To perceive the bacterial flagellin peptide flg22 for effective defense signaling, the immune receptor FLAGELLIN SENSING2 (FLS2) needs to be at its site of function, the PM, in the correct abundance. However, the intracellular machinery that controls PM accumulation of FLS2 remains largely undefined.
View Article and Find Full Text PDFThe plasma membrane (PM) forms a barrier between a plant cell and its environment. Proteins at this subcellular location play diverse and complex roles, including perception of extracellular signals to coordinate cellular changes. Analyses of PM proteins, however, are often limited by the relatively low abundance of these proteins in the total cellular protein pool.
View Article and Find Full Text PDFCurr Protoc Plant Biol
May 2016
Cellular membranes define the boundaries between organelles and the cytosol or the extracellular environment, thus providing functional separation between subcellular compartments. In addition, membranes assist in a diverse range of cellular functions, including serving as signaling platforms, mediating transport of molecules, and facilitating trafficking of cargo between cellular compartments. Because membrane functionality is largely defined by protein composition, exploring the roles of membrane proteins is of interest to many researchers.
View Article and Find Full Text PDFFLAGELLIN-SENSING2 (FLS2) is the plant cell surface receptor that perceives bacterial flagellin or flg22 peptide, initiates flg22-signaling responses, and contributes to bacterial growth restriction. Flg22 elicitation also leads to ligand-induced endocytosis and degradation of FLS2 within 1 h. Why plant cells remove this receptor precisely at the time during which its function is required remains mainly unknown.
View Article and Find Full Text PDF