The exposure to amoxicillin has been associated with molar incisor hypomineralization. This study aimed to determine if amoxicillin disturbs the enamel mineralization in in vivo experiments. Fifteen pregnant rats were randomly assigned into three groups to received daily phosphatase-buffered saline or amoxicillin as either 100 or 500 mg/kg.
View Article and Find Full Text PDFObjective: Our aim was to study the effect of high temperature (39°C) corresponding to fever on the development of enamel in cultured mouse molars.
Design: For morphological studies mandibular molar blocks from E18 mice were cultured for 11 days. After three days at 37°C the teeth were exposed to 39°C for three or five days and returned to 37°C.
Objective: Excess fluoride intake during tooth development is known to cause dental fluorosis. It has also been suggested that amoxicillin use in early childhood is associated with enamel hypomineralization. The aim was to investigate separate and combined effects of sodium fluoride (NaF) and amoxicillin on enamel formation in vitro.
View Article and Find Full Text PDFWe showed in a previous in vitro study that tributyltin (TBT) arrests dentin mineralization and enamel formation in developing mouse tooth. The present aim was to investigate the effect of TBT on the expression of genes associated with mineralization of dental hard tissues. Embryonic day 18 mouse mandibular first molars were cultured for 3, 5 or 7 days and exposed to 1.
View Article and Find Full Text PDFFluoride interferes with enamel matrix secretion and mineralization and dentin mineralization. The most toxic dioxin congener, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), also impairs dental hard tissue formation and mineralization in vitro and in vivo. Our aim was to investigate in vitro whether the combined effect of sodium fluoride (NaF) and TCDD on dental hard tissue formation is potentiative.
View Article and Find Full Text PDFTributyltin (TBT), earlier used as an antifouling agent in marine paints, causes damage to the aquatic ecosystem, for example, impaired shell calcification in oysters. TBT affects hard tissue mineralization even in mammals: delayed bone mineralization has been observed in rodents exposed to TBT in utero. To see if TBT interferes with tooth development, especially dental hard tissue formation, we exposed mouse E18 mandibular first and second molars to 0.
View Article and Find Full Text PDFPrevious studies show that the most toxic dioxin congener, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), interferes with mineralization of the dental matrices in developing mouse and rat teeth. Culture of mouse embryonic molar teeth with TCDD leads to the failure of enamel to be deposited and dentin to undergo mineralization. Lactationally exposed rats show defectively matured enamel and retardation of dentin mineralization.
View Article and Find Full Text PDFClinical studies suggest that maternal smoking during pregnancy can reduce the crown size of the child's teeth. Delayed dental age compared with chronological age has also been reported in children whose parents smoke. Among the main components of tobacco smoke are nonhalogenated polycyclic aromatic hydrocarbons (PAHs), many of which are highly toxic.
View Article and Find Full Text PDFToxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) to mouse embryonic teeth, sharing features of early development with salivary glands in common, involves enhanced apoptosis and depends on the expression of epidermal growth factor (EGF) receptor. EGF receptor signaling, on the other hand, is essential for salivary gland branching morphogenesis. To see if TCDD impairs salivary gland morphogenesis and if the impairment is associated with EGF receptor signaling, we cultured mouse (NMRI) E13 submandibular glands with TCDD or TCDD in combination with EGF or fibronectin (FN), both previously found to enhance branching morphogenesis.
View Article and Find Full Text PDFPrevious studies have shown that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) can arrest molar tooth development in rats after in utero and lactational exposure, and that the sensitive stage is temporally restricted. To define the stage in which TCDD is able to arrest tooth development and the cellular background of the effect, mouse embryonic molar tooth explants including various early developmental stages from initiation to late cap stage were exposed to TCDD in organ culture. TCDD did not inhibit morphogenesis of the first molar teeth including the early bud-staged E12 first molars, but the teeth were smaller than in control cultures.
View Article and Find Full Text PDFDioxins are ubiquitous environmental pollutants that afflict developing teeth. To find out if the effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the continuously erupting rat incisor is associated with the sensitivity to TCDD acute lethality and to see the histological basis for any macroscopic findings, we exposed 25 resistant Han/Wistar (Kuopio; H/W) and 20 sensitive Long-Evans (Turku/AB; L-E) female rats to total doses of 0.17, 1.
View Article and Find Full Text PDFDioxins are persistent and ubiquitous environmental poisons that become enriched in the food chain. Besides being acutely lethal, the most toxic dioxin congener, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), is developmentally toxic to many animal species. We have previously found that developing teeth of children may be sensitive to environmental dioxins via their mother's milk and that rat and mouse teeth are dioxin-sensitive throughout their development.
View Article and Find Full Text PDF