Publications by authors named "Carin Lassen"

Objectives: Acquired trisomy 21 is one of the most common numerical abnormalities in acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), myeloproliferative neoplasms (MPN), and MDS/MPN; however, little is known about its pathogenic impact, accompanying submicroscopic changes, and its relation to other clinical features. Furthermore, previous studies addressing this issue have mainly focused on cases in which +21 was part of a complex karyotype.

Methods: We ascertained the incidence of +21, both as a sole change (T21s) and irrespective of additional changes (T21all), in relation to disease type, morphologic subgroup, gender, and age in all published AML, MDS, MPN, and MDS/MPN cases.

View Article and Find Full Text PDF

Chronic myeloid leukemia (CML) is genetically characterized by the Philadelphia (Ph) chromosome, formed through a reciprocal translocation between chromosomes 9 and 22 and giving rise to the constitutively active tyrosine kinase P210 BCR/ABL1. Therapeutic strategies aiming for a cure of CML will require full eradication of Ph chromosome-positive (Ph(+)) CML stem cells. Here we used gene-expression profiling to identify IL-1 receptor accessory protein (IL1RAP) as up-regulated in CML CD34(+) cells and also in cord blood CD34(+) cells as a consequence of retroviral BCR/ABL1 expression.

View Article and Find Full Text PDF

The 8p11 myeloproliferative syndrome (EMS), also referred to as stem cell leukemia/lymphoma, is a chronic myeloproliferative disorder that rapidly progresses into acute leukemia. Molecularly, EMS is characterized by fusion of various partner genes to the FGFR1 gene, resulting in constitutive activation of the tyrosine kinases in FGFR1. To date, no previous study has addressed the functional consequences of ectopic FGFR1 expression in the potentially most relevant cellular context, that of normal primary human hematopoietic cells.

View Article and Find Full Text PDF

Despite the recent success of tyrosine kinase inhibitors (TKIs) in the treatment of chronic myeloid leukemia (CML), approximately 2-17% of patients develop clonal cytogenetic changes in the Philadelphia-negative (Ph(-)) cell population. A fraction of these patients, in particular those displaying trisomy 8 or monosomy 7, are at risk of developing a myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML). Consequently, there is a need to characterize the clinical features of such cases and to increase our understanding of the pathogenetic mechanisms underlying the emergence of clonal cytogenetic changes in Ph(-) cells.

View Article and Find Full Text PDF

Objective: The P190 and P210 BCR/ABL1 fusion genes are mainly associated with different types of hematologic malignancies, but it is presently unclear whether they are functionally different following expression in primitive human hematopoietic cells.

Materials And Methods: We investigated and systematically compared the effects of retroviral P190 BCR/ABL1 and P210 BCR/ABL1 expression on cell proliferation, differentiation, and global gene expression in human CD34(+) cells from cord blood.

Results: Expression of either P190 BCR/ABL1 or P210 BCR/ABL1 resulted in expansion of erythroid cells and stimulated erythropoietin-independent burst-forming unit-erythroid colony formation.

View Article and Find Full Text PDF

The t(X;7)(q22;q34), a translocation not previously reported in a neoplastic disorder, was identified and molecularly characterised in a paediatric T-cell acute lymphoblastic leukaemia (T-ALL), subsequently shown also to harbour a deletion of 6q, a STIL/TAL1 fusion and an activating NOTCH1 mutation. The t(X;7) was further investigated using fluorescence in situ hybridisation (FISH), real-time quantitative polymerase chain reaction (RQ-PCR) and Western blot analyses. FISH revealed a breakpoint at the T-cell receptor beta locus at 7q34 and mapped the corresponding breakpoint to Xq22.

View Article and Find Full Text PDF

Philadelphia (Ph) chromosome-positive leukemia is characterized by the BCR/ABL1 fusion protein that affects a wide range of signal transduction pathways. The knowledge about its downstream target genes is, however, still quite limited. To identify novel BCR/ABL1-regulated genes we used global gene expression profiling of several Ph-positive and Ph-negative cell lines treated with imatinib.

View Article and Find Full Text PDF

During 1995-2004, 209 children/adolescents were diagnosed with acute lymphoblastic or myeloid leukemia (ALL, AML) in Southern Sweden, of which 177 (85%), comprising 128 B-lineage ALL, 34 AML, and 15 T-cell ALL, could be analyzed for internal tandem duplications (ITD) and activating point mutations in the second tyrosine kinase domain (ATKD) of FLT3. Seventeen (10%) FLT3 mutations (6 ITD, 11 ATKD; mutually exclusive) were detected. None of the T-cell ALL harbored any mutations.

View Article and Find Full Text PDF

The 8p11 myeloproliferative syndrome (EMS) is a chronic myeloproliferative disorder molecularly characterized by fusion of various 5' partner genes to the 3' part of the fibroblast growth factor receptor 1 (FGFR1) gene at 8p, resulting in constitutive activation of the tyrosine kinase activity contained within FGFR1. EMS is associated with a high risk of transformation to acute myeloid leukemia (AML), but the mechanisms underlying the disease progression are unknown. In the present study, we have investigated a case of EMS harboring a t(8;22)(p11;q11)/BCR-FGFR1 rearrangement as well as a t(9;21)(q34;q22) at the time of AML transformation.

View Article and Find Full Text PDF

Objectives: The t(12;14)(p13;q11)--a recurrent translocation in childhood T-cell acute lymphoblastic leukemia (T-ALL)--has very recently been molecularly characterized in one case, which displayed overexpression of the cyclin D2 gene (CCND2).

Patients And Methods: We have characterized two pediatric t(12;14)-positive T-ALLs using fluorescence in situ hybridization (FISH), cDNA microarray, and real-time polymerase chain reaction (PCR).

Results: FISH revealed breakpoints (BPs) in the T-cell receptor alpha/delta locus (14q11) and in the vicinity of the CCND2 gene at 12p13.

View Article and Find Full Text PDF

Global expression profiles of a consecutive series of 121 childhood acute leukemias (87 B lineage acute lymphoblastic leukemias, 11 T cell acute lymphoblastic leukemias, and 23 acute myeloid leukemias), six normal bone marrows, and 10 normal hematopoietic subpopulations of different lineages and maturations were ascertained by using 27K cDNA microarrays. Unsupervised analyses revealed segregation according to lineages and primary genetic changes, i.e.

View Article and Find Full Text PDF

Double minutes (dmin), the cytogenetic hallmark of genomic amplification, are found in approximately 1% of karyotypically abnormal acute myeloid leukemias (AML) and myelodysplastic syndromes (MDS). The MYC gene at 8q24 has been reported to be amplified in the majority of the cases, and generally it has been assumed that MYC is the target gene. However, only a few studies have focused on the extent of the amplicon or on the expression patterns of the amplified genes.

View Article and Find Full Text PDF

Objective: The t(9;22) translocation is associated with more than 95% of cases of chronic myeloid leukemia. The resulting fusion of the BCR and ABL1 loci produces the constitutively active BCR/ABL1 tyrosine kinase. A wide range of signal transduction molecules are activated by BCR/ABL1, including MYC, PI-3 kinase, and different STAT molecules.

View Article and Find Full Text PDF

Background: The FLT3 gene is frequently mutated in acute myeloid leukemia (AML), either by an internal tandem duplication (ITD) of the juxtamembrane domain or by activating point mutations in the second tyrosine kinase domain (ATKD). Only a few investigations have focused on the prognostic significance of FLT3 alterations in AML among the elderly, yielding conflicting results. In the present study, the frequency and clinical relevance of FLT3 abnormalities were ascertained in a cohort of elderly AML patients.

View Article and Find Full Text PDF

Most chronic myeloid leukaemia (CML) patients are genetically characterized by the t(9;22)(q34;q11), generating the BCR/ABL1 fusion gene. However, a few CML patients with rearrangements of 9q34 and 12p13, leading to ETV6/ABL1 chimaeras, have also been reported. Here we describe the clinical and genetic response to imatinib mesylate treatment of an ETV6/ABL1-positive CML patient diagnosed in blast crisis (BC).

View Article and Find Full Text PDF

The pathogenetic role of the P210 BCR/ABL1 fusion gene in the chronic phase of chronic myeloid leukemia (CML) has been well established.In contrast, the genetic mechanisms underlying the disease progression into the accelerated phase (AP) and the final blast crisis (BC) remain poorly understood. We have previously identified (A.

View Article and Find Full Text PDF