Publications by authors named "Carin A Huset"

Background: Per- and polyfluoroalkyl substances (PFAS) are a class of persistent synthetic chemicals that are found in human milk and are associated with negative health effects. Research suggests that PFAS affect both lactation and the human metabolome.

Methods: We measured perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) in the milk of 425 participants from the New Hampshire Birth Cohort Study using liquid chromatography-tandem mass spectrometry (LC-MS/MS).

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFAS) are related to various adverse health outcomes, and food is a common source of PFAS exposure. Dietary sources of PFAS have not been adequately explored among U.S.

View Article and Find Full Text PDF

With increasing public awareness of PFAS, and their presence in biological and environmental media across the globe, comes a matching increase in the number of PFAS monitoring studies. As more matrices and sample cohorts are examined, there are more opportunities for matrix interferents to appear as PFAS where there are none (i.e.

View Article and Find Full Text PDF

Unlabelled: Human milk is rich in essential nutrients and immune-activating compounds but is also a source of toxicants including per- and polyfluoroalkyl substances (PFAS). Evidence suggests that immune-related effects of PFAS may, in part, be due to alterations of the microbiome. We aimed to identify the association between milk PFAS exposure and the infant gut microbiome.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFAS) are environmentally persistent endocrine-disrupting chemicals associated with long-term health outcomes. PFAS are transferred from maternal blood to human milk, an important exposure source for infants, and understanding of this transfer is evolving. We characterized concentrations of 10 PFAS in human milk ( = 426) and compared milk-to-plasma concentrations of 9 PFAS among a subset of women with paired samples ( = 294) from the New Hampshire Birth Cohort Study using liquid chromatography-isotope dilution tandem mass spectrometry.

View Article and Find Full Text PDF

The Minnesota Department of Health measured levels of perfluoroalkyl acids (PFAAs) in house dust at homes in communities impacted by PFAA-contaminated soil and drinking water to determine whether PFAAs in soil outside the home are associated with concentrations in dust. House dust samples from both interior living spaces and entryways to the yard were collected and analyzed separately based on the presumption that PFAAs in entryway dust may better reflect "track-in" of PFAAs into the home from contaminated soil or lawns irrigated with contaminated water. PFAA detections and concentrations in living rooms were significantly higher compared to entryways; and concentrations in both sampling locations were higher than corresponding soil concentrations, suggesting that interior sources were the main contributors to PFAAs in house dust.

View Article and Find Full Text PDF

This data article includes details on the simple and efficient analytical methods used to measure perfluoroalkyl substances (PFASs) in water, soil, and produce from home gardens in Minnesota. PFASs in water were analyzed via direct injection. PFASs were extracted from homogenized soil using sonication, and from produce using dispersive solid phase extraction.

View Article and Find Full Text PDF

The decades-long disposal of manufacturing waste containing perfluoroalkyl substances (PFAS) in landfills resulted in contamination of groundwater serving as the drinking water supply for the eastern Twin Cities metropolitan region. While measures were taken to reduce the levels of PFAS in the drinking water, questions remained about possible non-drinking water pathways of exposure in these communities. The Minnesota Department of Health (MDH) investigated whether PFAS in water used for yard and garden irrigation results in elevated concentrations of PFAS in soil and home-grown produce.

View Article and Find Full Text PDF

Twenty-four fluorochemicals were quantified in landfill leachates recovered from municipal refuse using an analytical method based on solid-phase extraction, dispersive-carbon sorbent cleanup, and liquid chromatography/tandem mass spectrometry. The method was applied to six landfill leachates from four locations in the US as well as to a leachate generated by a laboratory bioreactor containing residential refuse. All seven leachates had the common characteristic that short-chain (C(4)-C(7)) carboxylates or sulfonates were greater in abundance than their respective longer-chain homologs (≥ C(8)).

View Article and Find Full Text PDF

Fluorochemicals are persistent contaminants that are globally distributed in air, water, sediments, and biota. Wastewater treatment plants (WWTPs) play an important role in mitigating pollutant releases from municipalities to aquatic and terrestrial environments. However, because WWTPs are point sources of fluorochemicals, it is important to understand their contribution to fluorochemical burdens in the greater context of watersheds.

View Article and Find Full Text PDF

Fluorochemicals have widespread applications and are released into municipal wastewater treatment plants via domestic wastewater. A field study was conducted at a full-scale municipal wastewater treatment plant to determine the mass flows of selected fluorochemicals. Flow-proportional, 24 h samples of raw influent, primary effluent, trickling filter effluent, secondary effluent, and final effluent and grab samples of primary, thickened, activated, and anaerobically digested sludge were collected over 10 days and analyzed by liquid chromatography electrospray-ionization tandem mass spectrometry.

View Article and Find Full Text PDF