Publications by authors named "Carene Rizzon"

A Whole Genome Duplication (WGD) event occurred several Ma in a Rosaceae ancestor, giving rise to the Maloideae subfamily which includes today many pome fruits such as pear (Pyrus communis) and apple (Malus domestica). This complete and well-conserved genome duplication makes the apple an organism of choice to study the early evolutionary events occurring to ohnologous chromosome fragments. In this study, we investigated gene sequence evolution and expression, transposable elements (TE) density, and DNA methylation level.

View Article and Find Full Text PDF

Transposable elements (TEs) are major components of eukaryotic genomes and represent approximately 45% of the human genome. TEs can be important sources of novelty in genomes and there is increasing evidence that TEs contribute to the evolution of gene regulation in mammals. Gene duplication is an evolutionary mechanism that also provides new genetic material and opportunities to acquire new functions.

View Article and Find Full Text PDF

Gene duplication is an important evolutionary mechanism allowing to provide new genetic material and thus opportunities to acquire new gene functions for an organism, with major implications such as speciation events. Various processes are known to allow a gene to be duplicated and different models explain how duplicated genes can be maintained in genomes. Due to their particular importance, the identification of duplicated genes is essential when studying genome evolution but it can still be a challenge due to the various fates duplicated genes can encounter.

View Article and Find Full Text PDF

Epigenetic modifications have an important role to explain part of the intra- and inter-species variation in gene expression. They also have a role in the control of transposable elements (TEs) whose activity may have a significant impact on genome evolution by promoting various mutations, which are expected to be mostly deleterious. A change in the local epigenetic landscape associated with the presence of TEs is expected to affect the expression of neighboring genes since these modifications occurring at TE sequences can spread to neighboring sequences.

View Article and Find Full Text PDF

In flowering plants, the accumulation of small deletions through unequal homologous recombination (UR) and illegitimate recombination (IR) is proposed to be the major process counteracting genome expansion, which is caused primarily by the periodic amplification of long terminal repeat retrotransposons (LTR-RTs). However, the full suite of evolutionary forces that govern the gain or loss of transposable elements (TEs) and their distribution within a genome remains unclear. Here, we investigated the distribution and structural variation of LTR-RTs in relation to the rates of local genetic recombination (GR) and gene densities in the rice (Oryza sativa) genome.

View Article and Find Full Text PDF

Our knowledge of recombination rates and patterns in plants is far from being comprehensive. However, compelling evidence indicates a central role for recombination, through its influences on mutation and selection, in the evolution of plant genomes. Furthermore, recombination seems to be generally higher and more variable in plants than in animals, which could be one of the primary reasons for differences in genome lability between these two kingdoms.

View Article and Find Full Text PDF

In Arabidopsis, tandemly arrayed genes (TAGs) comprise >10% of the genes in the genome. These duplicated genes represent a rich template for genetic innovation, but little is known of the evolutionary forces governing their generation and maintenance. Here we compare the organization and evolution of TAGs between Arabidopsis and rice, two plant genomes that diverged ~150 million years ago.

View Article and Find Full Text PDF

Examining the relationships among DNA sequence, meiotic recombination, and chromosome structure at a genome-wide scale has been difficult because only a few markers connect genetic linkage maps with physical maps. Here, we have positioned 1195 genetically mapped expressed sequence tag (EST) markers onto the 10 pachytene chromosomes of maize by using a newly developed resource, the RN-cM map. The RN-cM map charts the distribution of crossing over in the form of recombination nodules (RNs) along synaptonemal complexes (SCs, pachytene chromosomes) and allows genetic cM distances to be converted into physical micrometer distances on chromosomes.

View Article and Find Full Text PDF

To identify the factors (selective or mutational) that affect the distribution of transposable elements (TEs) within a genome, it is necessary to compare the pattern of newly arising element insertions to the pattern of element insertions that have been fixed in a population. To do this, we analyzed the distribution of recent mutant insertions of the Tc1, Tc3, and Tc5 elements in a mut-7 background of the nematode Caenorhabditis elegans and compared it to the distribution of element insertions (presumably fixed) within the sequenced genome. Tc1 elements preferentially insert in regions with high recombination rates, whereas Tc3 and Tc5 do not.

View Article and Find Full Text PDF

The availability of the sequenced Drosophila melanogaster genome provides an opportunity to study sequence variation between copies within transposable element families. In this study,we analyzed the 624 copies of 22 transposable element (TE) families (14 LTR retrotransposons, five non-LTR retrotransposons, and three transposons). LTR and non-LTR retrotransposons possessed far fewer divergent elements than the transposons,suggesting that the difference depends on the transposition mechanism.

View Article and Find Full Text PDF

We analyzed the distribution of 54 families of transposable elements (TEs; transposons, LTR retrotransposons, and non-LTR retrotransposons) in the chromosomes of Drosophila melanogaster, using data from the sequenced genome. The density of LTR and non-LTR retrotransposons (RNA-based elements) was high in regions with low recombination rates, but there was no clear tendency to parallel the recombination rate. However, the density of transposons (DNA-based elements) was significantly negatively correlated with recombination rate.

View Article and Find Full Text PDF