Chronic Kidney Disease (CKD) patients present a micro inflammation state due to failure renal function. The calcitriol has been described as an anti-inflammatory factor that might modulates the inflammatory response in CKD patients. However, these patients have deficiency of Calcitriol due to failure renal function.
View Article and Find Full Text PDFChronic kidney disease (CKD) is characterized by loss of renal function and a consequent increase of serum uremic toxins, which contribute to inflammation status. Deficiency of 25-vitamin D, often found in patients with CKD, has been included as an inflammatory factor since it might modulate the immune system. The aim of this study was to investigate the role of 25-vitamin D on inflammatory pathways in healthy and uremic environment.
View Article and Find Full Text PDFJ Ren Nutr
September 2019
Background: End-stage renal disease results in B cell lymphopenia and low levels of vitamin D. Since the link between vitamin D deficiency and B lymphocytes dysfunction are not clear in patients with end-stage renal disease, we suggest that vitamin D adequacy and factors related to the homeostasis of these cells should be investigated. B lymphocytes homeostasis is a process mainly regulated signals of grown and death as interleukin (IL)-7, B cell-activating factor (BAFF)/BAFF-receptor and CD95 expression.
View Article and Find Full Text PDFSepsis is a big health problem and one of the most common causes of acute lung injury (ALI) leading to high mortality. Pro-resolving mediators play an important role in abrogating the inflammation and promoting tissue homeostasis restoration. ALI treatment is still a clinical health problem, so new therapies are needed.
View Article and Find Full Text PDFIntroduction: In chronic kidney disease (CKD), it has been suggested that alterations within the gut are associated with an inflammatory state and uremic toxicity. Studies suggest that uremia may impair the function of the intestinal barrier via the promotion of increased intestinal permeability. To understand the mechanisms that are involved in intestinal barrier damage in the setting of uremia, we evaluated the in vitro effect of uremic serum on transepithelial electrical resistance (TER), inflammation, and apoptosis in intestinal epithelial cells (T84).
View Article and Find Full Text PDFGenetic variations in TGF-β and IFN-γ may interfere with proinflammatory cytokine production and, consequently, may be involved with inflammatory diseases, as acute kidney injury (AKI). We considered that genetic polymorphisms of these cytokines may have a crucial role in the outcome of critically ill patients. To investigate whether the genetic polymorphisms of rs1800470 (codon 10 T/C), rs1800471 (codon 25 C/G) from the TGF-β, and rs2430561 (+874 T/A) from IFN-γ may be a risk factor for ICU patients to the development of AKI and/or death.
View Article and Find Full Text PDF