Chronic inflammatory temporomandibular disorder (TMD) pain has a high prevalence, and available nonspecific treatments have adverse side effects. ECa 233, a standardized Centella asiatica extract, is highly anti-inflammatory and safe. We investigated its therapeutic effects by injecting complete Freund's adjuvant (CFA) into right temporomandibular joint of mice and administering either ibuprofen or ECa 233 (30, 100, and 300 mg/kg) for 28 days.
View Article and Find Full Text PDFObjective: Mirror-image pain is a kind of pain that occurs on the contralateral side, but its pathogenesis remains unclear. To develop an osteoarthritis mouse model for investigating mirror-image pain through observing nocifensive behaviors, histological changes, and nociceptive activity at days 3, 7, 14, 21, and 28 after the chemical induction of unilateral temporomandibular joint (TMJ) osteoarthritis.
Methodology: We randomly divided 6-week-old mice into sham and complete Freund adjuvant groups.
Kaempferol, a plant-derived flavonoid, has been reported to have activity against Japanese encephalitis virus (JEV) in BHK-21 cells. To determine the broader utility of this compound, we initially evaluated the activity of kaempferol against JEV and dengue virus (DENV) in HEK293T/17 cells. Results showed no significant antiviral activity against either virus.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
February 2013
We document the derivation and implementation of extensions to a two-dimensional, multicomponent lattice Boltzmann equation model, with Laplace law interfacial tension. The extended model behaves in such a way that the boundary between its immiscible drop and embedding fluid components can be shown to describe a vesicle of constant volume bounded by a membrane with conserved length, specified interface compressibility, bending rigidity, preferred curvature, and interfacial tension. We describe how to apply this result to several, independent vesicles.
View Article and Find Full Text PDFComputer simulations can potentially be used to design, predict, and inform properties for tissue engineering perfusion bioreactors. In this work, we investigate the flow properties that result from a particular poly-L-lactide porous scaffold and a particular choice of perfusion bioreactor vessel design used in bone tissue engineering. We also propose a model to investigate the dynamic seeding properties such as the homogeneity (or lack of) of the cellular distribution within the scaffold of the perfusion bioreactor: a pre-requisite for the subsequent successful uniform growth of a viable bone tissue engineered construct.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
June 2011
The lattice Boltzmann method (LBM) for computational fluid dynamics benefits from a simple, explicit, completely local computational algorithm making it highly efficient. We extend LBM to recover hydrodynamics of multi-component immiscible fluids, while retaining a completely local, explicit and simple algorithm. Hence, no computationally expensive lattice gradients, interaction potentials or curvatures, that use information from neighbouring lattice sites, need to be calculated, which makes the method highly scalable and suitable for high performance parallel computing.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
December 2010
This paper generalizes the two-component algorithm of Sec. , extending it, in Sec. , to describe N>2 mutually immiscible fluids in the isothermal continuum regime.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
October 2010
We present a generalization of the modified smooth particle hydrodynamics simulation technique capable of simulating static and dynamic liquid crystalline behavior. This generalization is then implemented in the context of the Qian-Sheng description of nematodynamics. To test the method, we first use it to simulate switching in both a Fréedericksz setup and a chiral hybrid aligned nematic cell.
View Article and Find Full Text PDFWe discuss, from the perspective of basic science, the physical and biological processes which underlie atherosclerotic (plaque) initiation at the vascular endothelium, identifying the widely separated spatial and temporal scales which participate. We draw on current, related models of vessel wall evolution, paying particular attention to the role of particulate flow (blood is not a continuum fluid), and proceed to propose, then validate all the key components in a multiply-coupled, multi-scale modeling strategy (in qualitative terms only, note). Eventually, this strategy should lead to a quantitative, patient-specific understanding of the coupling between particulate flow and the endothelial state.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
August 2010
A comparative modeling and experimental study of the zenithal bistable liquid crystal device is presented. A dynamic Landau de Gennes theory of nematic liquid crystals is solved numerically to model the electric field induced latching of the device and the results are compared with experimental measurements and theoretical approximations. The study gives a clear insight into the latching mechanism dynamics and enables the dependence of the device latching on both material parameters and surface shape to be determined.
View Article and Find Full Text PDFUnlabelled: To characterise predisposition to post herpetic neuralgia following herpes zoster.
Design: Late follow up of patients originally admitted with acute zoster to a double blind randomised placebo controlled study of oral acyclovir over 60 years of age.
Setting: Two UK cities of 1.
Phys Rev E Stat Nonlin Soft Matter Phys
January 2009
Quantitative comparison between the measured deformation of a neutrally buoyant drop, obtained with an appropriately conceived three-dimensional, multicomponent lattice Boltzmann equation simulation methods for continuum multicomponent hydrodynamics [Phys. Rev. E 76, 026708 (2007); 76, 026709 (2007)], are shown to be in agreement with the theoretical predictions of Taylor and Acrivos [J.
View Article and Find Full Text PDFBiomed Pharmacother
October 2008
Clinical research has historically focused on the two main strategies of in vivo and in vitro experimentation. The concept of applying scientific theory to direct clinical applications is relatively recent. In this paper we focus on the interaction of wall shear stress with the endothelium and discuss how 'state of the art' computer modelling techniques can provide valuable data to aid understanding.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
March 2008
We present and verify a multicomponent lattice Boltzmann simulation scheme for two immiscible and incompressible fluids with a large density contrast. Our method is constructed from a continuum approximation description of a single inhomogeneous, and essentially incompressible, fluid. The equations that arise from this analysis are mapped onto an established multicomponent lattice Boltzmann method.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
August 2007
We present a multicomponent lattice Boltzmann simulation for continuum fluid mechanics, paying particular attention to the component segregation part of the underlying algorithm. In the principal result of this paper, the dynamics of a component index, or phase field, is obtained for a segregation method after U. D'Ortona [Phys.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
June 2007
We describe here a rigorous and accurate model for the simulation of three-dimensional deformable particles (DPs). The method is very versatile, easily simulating various types of deformable particles such as vesicles, capsules, and biological cells. Each DP is resolved explicitly and advects within the surrounding Newtonian fluid.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
December 2006
A lattice Boltzmann scheme is presented which recovers the dynamics of nematic and chiral liquid crystals; the method essentially gives solutions to the Qian-Sheng [Phys. Rev. E 58, 7475 (1998)] equations for the evolution of the velocity and tensor order-parameter fields.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
October 2006
We use a relatively simple continuum model to investigate the effects of dielectric inhomogeneity within confined liquid-crystal cells. Specifically, we consider, in planar, cylindrical, and spherical geometries, the stability of a nematic-isotropic interface subject to an applied voltage when the nematic liquid crystal has a positive dielectric anisotropy. Depending on the magnitude of this voltage, the temperature, and the geometry of the cell, the nematic region may shrink until the material is completely isotropic within the cell, grow until the nematic phase fills the cell, or, in certain geometries, coexist with the isotropic phase.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
July 2006
We report three-dimensional parallel Lagrangian particle simulations using the lattice Boltzmann method, conducted at a low Reynolds number. Using modified Lees-Edwards boundary conditions and directly calculated viscous dissipation, we show that it is possible to recover excellent agreement with the Einstein viscosity formula in the low concentration limit and to predict viscosity corrections for larger concentrations.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
May 2006
The simulation of multicomponent fluids at low Reynolds number and low capillary number is of interest in a variety of applications such as the modeling of venule scale blood flow and microfluidics; however, such simulations are computationally demanding. An improved multicomponent lattice Boltzmann scheme, designed to represent interfaces in the continuum approximation, is presented and shown (i) significantly to reduce common algorithmic artifacts and (ii) to recover full Galilean invariance. The method is used to model drop dynamics in shear flow in two dimensions where it recovers correct results over a range of Reynolds and capillary number greater than that which may be addressed with previous methods.
View Article and Find Full Text PDFWe present a model of microfluidic flow of several completely immiscible fluids and use it to simulate a whole flow focusing device chamber. Our efficient, practical model supports a large parameter space, spanned by surface wetting, surface tension, liquid-liquid wetting, viscosity ratio, and inlet velocity. It is based upon an N-component lattice Boltzmann method with interrupted coalescence [Dupin, Philos.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
June 2003
A lattice Boltzmann (LB) scheme is described, which recovers the equations developed by Qian-Sheng for the hydrodynamics of a nematic liquid crystal with a tensor order parameter. The standard mesoscopic LB scalar density is generalized to a tensor quantity and the macroscopic momentum, density, and tensor order parameter are recovered from appropriate moments of this mesoscopic density. A single lattice Boltzmann equation is used with a direction dependent Bhatnagar, Gross, and Krook (BGK) collision term, with additional forcing terms to recover the antisymmetric terms in the stress tensor.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
May 2005
The formulas for the force exerted by the interface upon the fluids, given by Stelitano and Rothman [Phys. Rev. E 62, 6667 (2000)] are corrected.
View Article and Find Full Text PDF