Extracell Vesicles Circ Nucl Acids
January 2024
Microglia-mediated neuroinflammation is a key player in the pathogenesis of amyotrophic lateral sclerosis (ALS) as it can contribute to the progressive degeneration of motor neurons (MNs). Here, we investigated the role of mSOD1 NSC-34 MN-like cell-derived extracellular vesicles (EVs) in inducing the activation of BV2 microglial cells. NSC-34-released EVs were isolated by culture medium differential ultracentrifugation to obtain two fractions, one containing small EVs (diameter < 200 nm) and the other containing large EVs (diameter > 200 nm).
View Article and Find Full Text PDFCancer remains a significant global health challenge, with traditional therapies like surgery, chemotherapy, and radiation often accompanied by systemic toxicity and damage to healthy tissues. Despite progress in treatment, these approaches have limitations such as non-specific targeting, systemic toxicity, and resistance development in cancer cells. In recent years, nanotechnology has emerged as a revolutionary frontier in cancer therapy, offering potential solutions to these challenges.
View Article and Find Full Text PDFGrowing evidence identifies extracellular vesicles (EVs) as important cell-to-cell signal transducers in autoimmune disorders, including multiple sclerosis (MS). If the etiology of MS still remains unknown, its molecular physiology has been well studied, indicating peripheral blood mononuclear cells (PBMCs) as the main pathologically relevant contributors to the disease and to neuroinflammation. Recently, several studies have suggested the involvement of EVs as key mediators of neuroimmune crosstalk in central nervous system (CNS) autoimmunity.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is a neurodegenerative disease targeting the brain and spinal cord. Non-neuronal cells, including macrophages, may contribute to the disruption of motor neurons (MNs), neuromuscular junction dismantling and clinical signs of ALS. Understanding the modality and the effect of MNs-macrophage communication is pivotal.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) represents a neurodegenerative disorder characterized by the progressive loss of both upper and lower motor neurons, resulting in muscular atrophy and eventual paralysis. While much research has concentrated on investigating the impact of major mutations associated with ALS on motor neurons and central nervous system (CNS) cells, recent studies have unveiled that ALS pathogenesis extends beyond CNS imbalances, encompassing dysregulation in other tissues such as skeletal muscle. Evidence from animal models and patients supports this broader perspective.
View Article and Find Full Text PDFNeuroinflammation is a common pathological feature of amyotrophic lateral sclerosis (ALS). Although scientific evidence to date does not allow defining neuroinflammation as an ALS trigger, its role in exacerbating motor neuron (MNs) degeneration and disease progression is attracting research interest. Activated CNS (Central Nervous System) glial cells, proinflammatory peripheral and infiltrated T lymphocytes and monocytes/macrophages, as well as the immunoreactive molecules they release, represent the active players for the role of immune dysregulation enhancing neuroinflammation.
View Article and Find Full Text PDFThe distinctive properties of single-walled carbon nanotubes (SWCNTs) have inspired the development of many novel applications in the field of cell nanobiotechnology. However, studies thus far have not explored the effect of SWCNT functionalization on transport across the cell walls of prokaryotes. We explore the uptake of SWCNTs in Gram-negative cyanobacteria and demonstrate a passive length-dependent and selective internalization of SWCNTs decorated with positively charged biomolecules.
View Article and Find Full Text PDFNanoparticles have found use in a wide range of applications, mainly as carriers of active biomolecules. It is thus necessary to assess their toxicity for human health, as well as for the environment, on which there is still a gap of knowledge. In this work, sea urchin Paracentrotus lividus, a widely used model for embryotoxicity and spermiotoxicity, has been used to assess potential detrimental effects of amino-functionalized mesoporous silica nanoparticles (NH-MSiNPs) on embryonic development.
View Article and Find Full Text PDFBiomechanical testing is a necessity given the development of novel implants used in the osteosynthesis of hip fractures. The purpose of biomechanical testing is to recreate realistic conditions similar to the conditions. Although biomechanical testing of hip arthroplasty has been standardized since the 1970s, there is no consensus at present on testing methodology for osteosynthesis of hip fractures.
View Article and Find Full Text PDFNutraceuticals represent complementary or alternative beneficial products to the expensive and high-tech therapeutic tools in modern medicine. Nowadays, their medical or health benefits in preventing or treating different types of diseases is widely accepted, due to fewer side effects than synthetic drugs, improved bioavailability and long half-life. Among herbal and natural compounds, curcumin is a very attractive herbal supplement considering its multipurpose properties.
View Article and Find Full Text PDFExtracellular vesicles (EVs) are widely investigated in glioblastoma multiforme (GBM) for their involvement in regulating GBM pathobiology as well as for their use as potential biomarkers. EVs, through cell-to-cell communication, can deliver proteins, nucleic acids, and lipids that are able to reprogram tumor-associated macrophages (TAMs). This research is aimed to concentrate, characterize, and identify molecular markers of EVs subtypes released by temozolomide (TMZ)-treated and non TMZ-treated four diverse GBM cells.
View Article and Find Full Text PDFCytokine Growth Factor Rev
February 2020
Metabolic diseases are based on a dysregulated crosstalk between various cells such as adipocytes, hepatocytes and immune cells. Generally, hormones and metabolites mediate this crosstalk that becomes alterated in metabolic syndrome including obesity and diabetes. Recently, Extracellular Vesicles (EVs) are emerging as a novel way of cell-to-cell communication and represent an attractive strategy to transfer fundamental informations between the cells through the transport of proteins and nucleic acids.
View Article and Find Full Text PDFMycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), has infected over 1.7 billion people worldwide and causes 1.4 million deaths annually.
View Article and Find Full Text PDFMedicine, food, and cosmetics represent the new promising applications for silver (Ag) and gold (Au) nanoparticles (NPs). AgNPs are most commonly used in food and cosmetics; conversely, the main applications of gold NPs (AuNPs) are in the medical field. Thus, in view of the risk of accidentally or non-intended uptake of NPs deriving from the use of cosmetics, drugs, and food, the study of NPs⁻cell interactions represents a key question that puzzles researchers in both the nanomedicine and nanotoxicology fields.
View Article and Find Full Text PDFPEGylated non-ionic surfactant-based vesicles (NSVs) are promising drug delivery systems for the local, oral and systemic administrations of therapeutics. The aim of this study was to test the cellular biocompatibility and transport of Nile Red-loaded NSVs (NR-NSVs) across the Caco-2-cell monolayers, which represent an in vitro model of human intestinal epithelium. The NR-NSVs assumed a spherical shape with a mean size of 140 nm, and a narrow size distribution.
View Article and Find Full Text PDFNanotechnology has paved the way to innovative food packaging materials and analytical methods to provide the consumers with healthier food and to reduce the ecological footprint of the whole food chain. Combining antimicrobial and antifouling properties, thermal and mechanical protection, oxygen and moisture barrier, as well as to verify the actual quality of food, e.g.
View Article and Find Full Text PDFThis study aims to determine the interaction (uptake and biological effects on cell viability and cell cycle progression) of glucose capped silver nanoparticles (AgNPs-G) on human epithelioid cervix carcinoma (HeLa) cells, in relation to amount, 2×10 or 2×10 NPs/cell, and exposure time, up to 48h. The spherical and well dispersed AgNPs (30±5nm) were obtained by using glucose as reducing agent in a green synthesis method that ensures to stabilize AgNPs avoiding cytotoxic soluble silver ions Ag release. HeLa cells take up abundantly and rapidly AgNPs-G resulting toxic to cells in amount and incubation time dependent manner.
View Article and Find Full Text PDFAutophagy represents a cell's response to stress. It is an evolutionarily conserved process with diversified roles. Indeed, it controls intracellular homeostasis by degradation and/or recycling intracellular metabolic material, supplies energy, provides nutrients, eliminates cytotoxic materials and damaged proteins and organelles.
View Article and Find Full Text PDFThe effect of inhomogeneous static magnetic field (SMF)-exposure on the production of different cytokines from human peripheral blood mononuclear cells (PMBC), i.e., lymphocytes and macrophages, was tested in vitro.
View Article and Find Full Text PDFA surprising and unexpected biomineralization process was observed during toxicological assessment of carbon nanoparticles on Paracentrotus lividus (sea urchin) pluteus larvae. The larvae activate a process of defense against external material, by incorporating the nanoparticles into microstructures of aragonite similarly to pearl oysters. Aiming at a better understanding of this phenomenon, the larvae were exposed to increasing concentrations of carbon nanoparticles and the biomineralization products were analyzed by electron microscopy, x-ray diffraction and Raman spectroscopy.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2013