Pigment particles used in tattooing may exert long terms effect by releasing diffusible degradation products. In the present work, aqueous suspensions of the organic orange diazo pigment PO13 were aged by exposure to simulated sunlight at 40 °C. The morphology and the surface charge of PO13 particles were barely modified upon aging, but primary particles were released by de-agglomeration.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is the most common motor neuron disease, which still lacks effective disease-modifying therapies. Similar to other neurodegenerative disorders, such as Alzheimer and Parkinson disease, ALS pathology is presumed to propagate over time, originating from the motor cortex and spreading to other cortical regions. Exploring early disease stages is crucial to understand the causative molecular changes underlying the pathology.
View Article and Find Full Text PDFCilia defects lead to scoliosis in zebrafish, but the underlying pathogenic mechanisms are poorly understood and may diverge depending on the mutated gene. Here, we dissected the mechanisms of scoliosis onset in a zebrafish mutant for the gene encoding a ciliary transition zone protein. mutant fish developed scoliosis with near-total penetrance but asynchronous onset in juveniles.
View Article and Find Full Text PDFHeat stress (HS) impacts the nuclear proteome and, subsequently, protein activities in different nuclear compartments. In Arabidopsis thaliana, a short exposure to 37 °C leads to loss of the standard tripartite architecture of the nucleolus, the most prominent nuclear substructure, and, consequently, affects the assembly of ribosomes. Here, we report a quantitative label-free LC‒MS/MS (Liquid Chromatography coupled to tandem Mass Spectrometry) analysis to determine the nuclear proteome of Arabidopsis at 22 °C, HS (37 °C for 4 and 24 h), and a recovery phase.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is a debilitating motor neuron disease and lacks effective disease-modifying treatments. This study utilizes a comprehensive multiomic approach to investigate the early and sex-specific molecular mechanisms underlying ALS. By analyzing the prefrontal cortex of 51 patients with sporadic ALS and 50 control subjects, alongside four transgenic mouse models (C9orf72-, SOD1-, TDP-43-, and FUS-ALS), we have uncovered significant molecular alterations associated with the disease.
View Article and Find Full Text PDFHuman leukocyte antigen (HLA) class I peptide ligands (HLAIps) are key targets for developing vaccines and immunotherapies against infectious pathogens or cancer cells. Identifying HLAIps is challenging due to their high diversity, low abundance, and patient individuality. Here, we develop a highly sensitive method for identifying HLAIps using liquid chromatography-ion mobility-tandem mass spectrometry (LC-IMS-MS/MS).
View Article and Find Full Text PDFIn the era of open-modification search engines, more posttranslational modifications than ever can be detected by LC-MS/MS-based proteomics. This development can switch proteomics research into a higher gear, as PTMs are key in many cellular pathways important in cell proliferation, migration, metastasis, and aging. However, despite these advances in modification identification, statistical methods for PTM-level quantification and differential analysis have yet to catch up.
View Article and Find Full Text PDFAntibody-drug conjugates (ADCs) are highly complex proteins mainly due to the structural microvariability of the mAb, along with the additional heterogeneity afforded by the bioconjugation process. Top-down (TD) and middle-down (MD) strategies allow the straightforward fragmentation of proteins to elucidate the conjugated amino acid residues. Nevertheless, these spectra are very crowded with multiple overlapping and unassigned ion fragments.
View Article and Find Full Text PDFComparative proteomics and untargeted metabolomics were combined to study the physiological and metabolic adaptations of IGTS8 under biodesulfurization conditions. After growth in a chemically defined medium with either dibenzothiophene (DBT) or MgSO as the sulfur source, many differentially produced proteins and metabolites associated with several metabolic and physiological processes were detected including the metabolism of carbohydrates, amino acids, lipids, nucleotides, vitamins, protein synthesis, transcriptional regulation, cell envelope biogenesis, and cell division. Increased production of the redox cofactor mycofactocin and associated proteins was one of the most striking adaptations under biodesulfurization conditions.
View Article and Find Full Text PDFMonitoring of host cell proteins (HCPs) during the manufacturing of monoclonal antibodies (mAb) has become a critical requirement to provide effective and safe drug products. Enzyme-linked immunosorbent assays are still the gold standard methods for the quantification of protein impurities. However, this technique has several limitations and does, among others, not enable the precise identification of proteins.
View Article and Find Full Text PDFModified nucleotides in non-coding RNAs, such as tRNAs and snRNAs, represent an important layer of gene expression regulation through their ability to fine-tune mRNA maturation and translation. Dysregulation of such modifications and the enzymes installing them have been linked to various human pathologies including neurodevelopmental disorders and cancers. Several methyltransferases (MTases) are regulated allosterically by human TRMT112 (Trm112 in Saccharomyces cerevisiae), but the interactome of this regulator and targets of its interacting MTases remain incompletely characterized.
View Article and Find Full Text PDFTherapeutic monoclonal antibodies (mAb) production relies on multiple purification steps before release as a drug product (DP). A few host cell proteins (HCPs) may co-purify with the mAb. Their monitoring is crucial due to the considerable risk they represent for mAb stability, integrity, and efficacy and their potential immunogenicity.
View Article and Find Full Text PDFInterest in the use of machine learning for peptide fragmentation spectrum prediction has been strongly on the rise over the past years, especially for applications in challenging proteomics identification workflows such as immunopeptidomics and the full-proteome identification of data independent acquisition spectra. Since its inception, the MS²PIP peptide spectrum predictor has been widely used for various downstream applications, mostly thanks to its accuracy, ease-of-use, and broad applicability. We here present a thoroughly updated version of the MS²PIP web server, which includes new and more performant prediction models for both tryptic- and non-tryptic peptides, for immunopeptides, and for CID-fragmented TMT-labeled peptides.
View Article and Find Full Text PDFImputing missing values is a common practice in label-free quantitative proteomics. Imputation replaces a missing value by a user-defined one. However, the imputation itself is not optimally considered downstream of the imputation process.
View Article and Find Full Text PDFImputing missing values is common practice in label-free quantitative proteomics. Imputation aims at replacing a missing value with a user-defined one. However, the imputation itself may not be optimally considered downstream of the imputation process, as imputed datasets are often considered as if they had always been complete.
View Article and Find Full Text PDFImmunopeptidomics aims to identify major histocompatibility complex (MHC)-presented peptides on almost all cells that can be used in anti-cancer vaccine development. However, existing immunopeptidomics data analysis pipelines suffer from the nontryptic nature of immunopeptides, complicating their identification. Previously, peak intensity predictions by MSPIP and retention time predictions by DeepLC have been shown to improve tryptic peptide identifications when rescoring peptide-spectrum matches with Percolator.
View Article and Find Full Text PDFTranscription and processing of 45S rRNAs in the nucleolus are keystones of ribosome biogenesis. While these processes are severely impacted by stress conditions in multiple species, primarily upon heat exposure, we lack information about the molecular mechanisms allowing sessile organisms without a temperature-control system, like plants, to cope with such circumstances. We show that heat stress disturbs nucleolar structure, inhibits pre-rRNA processing and provokes imbalanced ribosome profiles in plants.
View Article and Find Full Text PDFGenes are pleiotropic and getting a better knowledge of their function requires a comprehensive characterization of their mutants. Here, we generated multi-level data combining phenomic, proteomic and metabolomic acquisitions from plasma and liver tissues of two C57BL/6 N mouse models lacking the Lat (linker for activation of T cells) and the Mx2 (MX dynamin-like GTPase 2) genes, respectively. Our dataset consists of 9 assays (1 preclinical, 2 proteomics and 6 metabolomics) generated with a fully non-targeted and standardized approach.
View Article and Find Full Text PDFSulfur metabolism in fuel-biodesulfurizing bacteria and the underlying physiological adaptations are not understood, which has impeded the development of a commercially viable bioprocess for fuel desulfurization. To fill these knowledge gaps, we performed comparative proteomics and untargeted metabolomics in cultures of the biodesulfurization reference strain Rhodococcus qingshengii IGTS8 grown on either inorganic sulfate or the diesel-borne organosulfur compound dibenzothiophene as a sole sulfur source. Dibenzothiophene significantly altered the biosynthesis of many sulfur metabolism proteins and metabolites in a growth phase-dependent manner, which enabled us to reconstruct the first experimental model for sulfur metabolism in a fuel-biodesulfurizing bacterium.
View Article and Find Full Text PDFB-cell receptor (BCR) signaling is crucial for the pathophysiology of most mature B-cell lymphomas/leukemias and has emerged as a therapeutic target whose effectiveness remains limited by the occurrence of mutations. Therefore, deciphering the cellular program activated downstream this pathway has become of paramount importance for the development of innovative therapies. Using an original ex vivo model of BCR-induced proliferation of chronic lymphocytic leukemia cells, we generated 108 temporal transcriptional and proteomic profiles from 1 h up to 4 days after BCR activation.
View Article and Find Full Text PDFMass spectrometry has proven to be a valuable tool for the accurate quantification of proteins. In this study, the performances of three targeted approaches, namely selected reaction monitoring (SRM), parallel reaction monitoring (PRM) and sequential windowed acquisition of all theoretical fragment ion mass spectra (SWATH-MS), to accurately quantify ten potential biomarkers of beef meat tenderness or marbling in a cohort of 64 muscle samples were evaluated. So as to get the most benefit out of the complete MS2 maps that are acquired in SWATH-MS, an original label-free quantification method to estimate protein amounts using an I-spline regression model was developed.
View Article and Find Full Text PDFCopper is an essential metal for life, but is toxic at high concentrations. In mammalian cells, two copper transporters are known, CTR1 and CTR2. In order to gain insights on the possible influence of the import pathway on cellular responses to copper, two copper challenges were compared: one with copper ion, which is likely to use preferentially CTR1, and one with a copper-polyacrylate complex, which will be internalized via the endosomal pathway and is likely to use preferentially CTR2.
View Article and Find Full Text PDF