Publications by authors named "Cara Wall-Scheffler"

Objectives: Long lower limbs relative to body size are thought to be an adaptation to prevent excessive increases in body temperature during running in hot climate. The advantage of long lower limbs relative to body size is usually explained by an increase in body surface area relative to mass; however, the influence of limb length on relative body surface area was shown to be minor. We aimed to experimentally test the effect of relative lower-limb length (LLL) on body temperature changes during running.

View Article and Find Full Text PDF

Recent research on the pelvis has clarified the flexibility of pelvic bones to manage nearly infinite possibilities in terms of selection and drift, while still maintaining excellent bipedalism. Despite this work, and the studies outlining the diversity of pelvic morphology across the hominin lineage, conversations continue to be stymied by distractions related to purported trade-offs that the different functions the pelvis must either allow for (e.g.

View Article and Find Full Text PDF

The energetic cost of walking varies with mass and speed; however, the metabolic cost of carrying loads has not consistently increased proportionally to the mass carried. The cost of carrying mass, and the speed at which human walkers carry this mass, has been shown to vary with load position and load description (e.g.

View Article and Find Full Text PDF

The sexual division of labor among human foraging populations has typically been recognized as involving males as hunters and females as gatherers. Recent archeological research has questioned this paradigm with evidence that females hunted (and went to war) throughout the Homo sapiens lineage, though many of these authors assert the pattern of women hunting may only have occurred in the past. The current project gleans data from across the ethnographic literature to investigate the prevalence of women hunting in foraging societies in more recent times.

View Article and Find Full Text PDF

Human runners have long been thought to have the ability to consume a near-constant amount of energy per distance traveled, regardless of speed, allowing speed to be adapted to particular task demands with minimal energetic consequence. However, recent and more precise laboratory measures indicate that humans may in fact have an energy-optimal running speed. Here, we characterize runners' speeds in a free-living environment and determine if preferred speed is consistent with task- or energy-dependent objectives.

View Article and Find Full Text PDF

Persistence hunting has been suggested to be a key strategy for meat acquisition in Homo erectus. However, prolonged locomotion in hot conditions is associated with considerable water losses due to sweating. Consequently, dehydration has been proposed to be a critical limiting factor, effectively curtailing the usefulness of persistence hunting prior to the invention of water containers.

View Article and Find Full Text PDF

Adult body size correlates strongly with fitness, but mean body sizes frequently differ among conspecific populations. Ultimate, fitness-based explanations for these deviations in animals typically focus on community-level or physiological processes (e.g.

View Article and Find Full Text PDF

A major portion of humans' activity-based energy expenditure is taken up by locomotion, particularly walking. Walking behaviors have energetic outcomes and as such can be important windows into how populations and groups adjust to different environmental and task constraints. While sex differences in the speed of paired walkers have been established by others, the dynamics of how walkers adjust their speed in more varied groups and in groups containing children remains unexplored.

View Article and Find Full Text PDF

Objective: Running with a stroller provides an opportunity for parents to exercise near their child and counteract health declines experienced during early parenthood. Understanding biomechanical and physiological changes that occur when stroller running is needed to evaluate its health impact, yet the effects of stroller running have not been clearly presented. Here, three commonly used stroller pushing methods were investigated to detect potential changes in energetic cost and lower-limb kinematics.

View Article and Find Full Text PDF

Here, we argue that two key shifts in thinking are required to more clearly understand the selection pressures shaping pelvis evolution in female hominins: (1) the primary locomotor mode of female hominins was loaded walking in the company of others, and (2) the periodic gait of human walking is most effectively explained as a biomechanically controlled process related to heel-strike collisions that is tuned for economy and stability by properly-timed motor inputs (a model called dynamic walking). In the light of these two frameworks, the evidence supports differences between female and male upper-pelvic morphology being the result of the unique reproductive role of female hominins, which involved moderately paced, loaded walking in groups. Anat Rec, 300:764-775, 2017.

View Article and Find Full Text PDF

Objectives: The purpose of this article is to test whether people choose to behave in a manner that reduces the amount of energy they use to travel a given distance. While this has been shown consistently for walking, it has never been tested with human running.

Materials And Methods: We collected energetic data and lower limb anthropometrics on nine men running at six different running speeds.

View Article and Find Full Text PDF

Previous research has shown that people tend to walk around the speed that minimizes energy consumption when traveling a given distance. It has further been shown that men and women have different speeds that minimize energy and that women will choose slower speeds when the activity itself is a high-rate activity (e.g.

View Article and Find Full Text PDF

Human footprint fossils have provided essential evidence about the evolution of human bipedalism as well as the social dynamics of the footprint makers, including estimates of speed, sex and group composition. Generally such estimates are made by comparing footprint evidence with modern controls; however, previous studies have not accounted for the variation in footprint dimensions coming from load bearing activities. It is likely that a portion of the hominins who created these fossil footprints were carrying a significant load, such as offspring or foraging loads, which caused variation in the footprint which could extend to variation in any estimations concerning the footprint's maker.

View Article and Find Full Text PDF

Research has shown that individuals have an optimal walking speed-a speed which minimizes energy expenditure for a given distance. Because the optimal walking speed varies with mass and lower limb length, it also varies with sex, with males in any given population tending to have faster optimal walking speeds. This potentially creates an energetic dilemma for mixed-sex walking groups.

View Article and Find Full Text PDF

While mobility strategies are considered important in understanding selection pressures on individuals, testing hypotheses of such strategies requires high resolution datasets, particularly at intersections between morphology, ecology and energetics. Here we present data on interactions between morphology and energetics in regards to the cost of walking for reproductive women and place these data into a specific ecological context of time and heat load. Frontal loads (up to 16% of body mass), as during pregnancy and child-carrying, significantly slow the optimal and preferred walking speed of women, significantly increase cost at the optimal speed, and make it significantly more costly for women to walk with other people.

View Article and Find Full Text PDF

Introduction: Although both humans and quadrupeds frequently coordinate breathing and limb movement during running, early studies in humans focused on how increased breathing flexibility in humans allowed for relaxed or even transient coordination during locomotion. This difference was used to explain why quadrupeds had an optimal running speed whereas humans did not. Recent research, however, has clearly demonstrated that humans, like quadrupeds, have an optimal running speed.

View Article and Find Full Text PDF

The study of human evolution depends upon a fair assessment of the ability of hominin individuals to gain access to necessary resources. We expect that the morphology of extant and extinct populations represents a successful locomotory system that allowed individuals to move across the environment gaining access to food, water, and mates while still maintaining excess energy to allocate to reproduction. Our assessment of locomotor morphology must then incorporate tests of fitness within realistic environments--environments that themselves vary in terrain and whose negotiation requires a variety of gait and speeds.

View Article and Find Full Text PDF

Recent discussion of the selective pressures leading to the evolution of modern human postcranial morphology, seen as early as Homo erectus, has focused on the relative importance of walking versus running. Specifically, these conversations have centered on which gait may have been used by early Homo to acquire prey. An element of the debate is the widespread belief that quadrupeds are constrained to run at optimally efficient speeds within each gait, whereas humans are equally efficient at all running speeds.

View Article and Find Full Text PDF

Background: Gender differences in kinematics during running have been speculated to be a contributing factor to the lower extremity injury rate disparity between men and women. Specifically, increased non-sagittal motion of the pelvis and hip has been implicated; however it is not known if this difference exists under a variety of locomotion conditions. The purpose of this study was to characterize gender differences in gait kinematics and muscle activities as a function of speed and surface incline and to determine if lower extremity anthropometrics contribute to these differences.

View Article and Find Full Text PDF

Numerous studies have discussed the influence of thermoregulation on hominin body shape concluding, in accordance with Allen's rule, that the presence of relatively short limbs on both extant as well as extinct hominin populations offers an advantage for survival in cold climates by reducing the limb's surface area to volume ratio. Moreover, it has been suggested that shortening the distal limb segment compared to the proximal limb segment may play a larger role in thermoregulation due to a greater relative surface area of the shank. If longer limbs result in greater heat dissipation, we should see higher resting metabolic rates (RMR) in longer-limbed individuals when temperature conditions fall, since the resting rate will need to replace the lost heat.

View Article and Find Full Text PDF

Previous studies have differed in expectations about whether long limbs should increase or decrease the energetic cost of locomotion. It has recently been shown that relatively longer lower limbs (relative to body mass) reduce the energetic cost of human walking. Here we report on whether a relationship exists between limb length and cost of human running.

View Article and Find Full Text PDF

Drawing inferences about locomotor energetics from limb morphology, especially in regard to small differences between individuals, depends critically on valid estimates of lower-limb inertial properties. While there are numerous options for such estimations in the literature, geometric models that involve simple measures and straightforward mathematics combined with the ability to capture individual variation are rare. In this research, we apply a method, originally developed for quadrupeds, that models limb segments as elliptical columns.

View Article and Find Full Text PDF