Woodchuck infected with woodchuck hepatitis virus (WHV) is the most pathogenically compatible naturally occurring model of human hepatitis B virus (HBV) infection, chronic hepatitis B, and HBV-induced hepatocellular carcinoma. This system plays a crucial role in discovery and preclinical evaluation of anti-HBV therapies. Its utilization remains tempered by the relatively narrow range of validated immunologic and molecular tools.
View Article and Find Full Text PDFSummary: We present software to characterize and rank potential therapeutic (drug) targets with data from public databases and present it in a user-friendly format. By understanding potential obstacles to drug development through the gathering and understanding of this information, combined with robust approaches to target validation to generate therapeutic hypotheses, this approach may provide high quality targets, leading the process of drug development to become more efficient and cost-effective.
Availability And Implementation: The information we gather on potential targets concerns small-molecule druggability (ligandability), suitability for large-molecule approaches (e.
Rodent genomic alignment sequences support a 2-exon model for muscarinic M4 receptor. Using this model a novel N-terminal extension was discovered in the human muscarinic acetylcholine M4 receptor. An open reading frame was discovered in the human, mouse and rat with a common ATG (methionine start codon) that extended the N-terminus of the muscarinic acetylcholine M4 receptor subtype by 155 amino acids resulting in a longer variant.
View Article and Find Full Text PDFBackground: The serotonin 2A receptor is widely implicated in genetic association studies and remains an important drug target for psychiatric, neurological, and cardiovascular conditions. RNA sequencing redefined the architecture of the serotonin 2A receptor gene (HTR2A), revealing novel mRNA transcript isoforms utilizing unannotated untranslated regions of the gene. Expression of these untranslated regions is modulated by common single nucleotide polymorphisms (SNPs), namely rs6311.
View Article and Find Full Text PDFBackground: Genetic causes of exaggerated or reduced pain sensitivity in humans are well known. Recently, single nucleotide polymorphisms (SNPs) in the gene P2RX7, coding for the ATP-gated ion channel P2X7, have been described that cause gain-of-function (GOF) and loss-of-function (LOF), respectively of this channel. Importantly, P2RX7 SNPs have been associated with more or less severe pain scores in patient suffering of post-mastectomy pain and osteoarthritis.
View Article and Find Full Text PDFBackground And Purpose: Transient receptor potential vanilloid subtype 3 (TRPV3) is implicated in nociception and certain skin conditions. As such, it is an attractive target for pharmaceutical research. Understanding of endogenous TRPV3 function and pharmacology remains elusive as selective compounds and native preparations utilizing higher throughput methodologies are lacking.
View Article and Find Full Text PDFBackground: The 5-hydroxytryptamine 2A receptor, encoded by HTR2A, is a major postsynaptic target for serotonin in the human brain and a therapeutic drug target. Despite hundreds of genetic associations investigating HTR2A polymorphisms in neuropsychiatric disorders and therapies, the role of genetic HTR2A variability in health and disease remains uncertain.
Methods: To discover and characterize regulatory HTR2A variants, we sequenced whole transcriptomes from 10 human brain regions with massively parallel RNA sequencing and measured allelic expression of multiple HTR2A messenger (m)RNA transcript variants.
The ligand-gated ion channel family includes receptors for serotonin (5-hydroxytryptamine, 5-HT), acetylcholine, GABA, and glutamate. Drugs targeting subtypes of these receptors have proven useful for the treatment of various neuropsychiatric and neurological disorders. To identify new ligand-gated ion channels as potential therapeutic targets, drafts of human genome sequence were interrogated.
View Article and Find Full Text PDFMutations in the human presenilin genes (PS1 or PS2) have been linked to autosomal dominant, early onset Alzheimer's disease (AD). Presenilins, probably as an essential part of gamma-secretase, modulate gamma-cleavage of the amyloid protein precursor (APP) to the amyloid beta-peptide (Abeta). Mutations in sel-12, a Caenorhabditis elegans presenilin homologue, cause a defect in egg laying that can be suppressed by loss of function mutations in a second gene, SEL-10.
View Article and Find Full Text PDFPresenilins are components of the gamma-secretase protein complex that mediates intramembranous cleavage of betaAPP and Notch proteins. A C. elegans genetic screen revealed two genes, aph-1 and pen-2, encoding multipass transmembrane proteins, that interact strongly with sel-12/presenilin and aph-2/nicastrin.
View Article and Find Full Text PDF